如圖,在半徑為9,圓心角為90°的扇形OAB的數(shù)學公式上有一動點P,PH⊥OA,垂足為H,設G為△OPH的重心(三角形的三條中線的交點),當△PHG為等腰三角形時,PH的長為________.

3或
分析:題中只說△PHG為等腰三角形.沒有指明哪個是底哪個是腰,則應該分三種情況進行分析,從而求得PH的長.
解答:解:如圖,MH,NP是Rt△OPH的兩條中線,交點為G,
∵MN∥PH,MN=PH
∴MN⊥OH
設PH=x
(1)當PG=PH=x時,
∵MN∥PH,
==
∴NG=x
∵NH2=NP2-PH2=(x)2-x2=x2,ON2+MN2=OM2
∵ON=NH,
x2+(x)2=(2
∴x=;
(2)當PH=GH=x時,
同理得x=3;
(3)當GH=PG時,G點在線段PH的中垂線上,G點不是三角形的重心了.
所以PH的長為3或
點評:本題考查了三角形重心的概念,中位線定理,相似比,勾股定理等知識,還涉及了分類討論的思想,具有較強的綜合性.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個內(nèi)接正方形,然后作這個正方形的內(nèi)切圓,又在這個內(nèi)切圓中作內(nèi)接正方形,依此作到第n個內(nèi)切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖:在半徑為1的圓中,弦CD垂直平分AB,則CD=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為6cm的圓中,弦AB長6
3
cm,試求弦AB所對的圓周角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為R的圓內(nèi)作一個內(nèi)接正方形,然后作這個正方形的內(nèi)切圓,又在這個內(nèi)切圓中作內(nèi)接正方形,依此作到第n個內(nèi)切圓,它的半徑是
2
2
nR
2
2
nR

查看答案和解析>>

同步練習冊答案