如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C=90°)放在平面直角坐標(biāo)系中的第二象限,使點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上.
(1)寫出點(diǎn)A,B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在該拋物線上,并說(shuō)明理由.

【答案】分析:(1)根據(jù)腰長(zhǎng)為的等腰Rt△ABC(∠C=90°),由AC=,CO=1,求出AO即可得出A點(diǎn)的坐標(biāo),進(jìn)而得出B點(diǎn)的坐標(biāo);
(2)將B點(diǎn)坐標(biāo)代入y=ax2+ax-2即可得出二次函數(shù)解析式;
(3)利用旋轉(zhuǎn)的性質(zhì)得出Rt△AB′M≌Rt△BAN,進(jìn)而得出△AC′P≌△CAO,得出B′(1,-1)C′(2,1)代入二次函數(shù)解析式求出即可.
解答:解:(1)如圖1,做BE⊥x軸,
∵腰長(zhǎng)為的等腰Rt△ABC(∠C=90°),
∴AC=,CO=1,∴AO=2,
∴A(0,2),
∵∠ACO=∠EBC,
AC=BC,∠AOC=∠BEC,
∴△ACO≌△CBE,
∴BE=1,EO=3,
∴B(-3,1);

(2)將B點(diǎn)(-3,1)坐標(biāo)代入y=ax2+ax-2即可得出二次函數(shù)解析式;
解析式為:y=+x-2;

(3)如圖2,過(guò)點(diǎn)B'作B'M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C'作C'P⊥y軸于點(diǎn)P.在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點(diǎn)C′(2,1);
當(dāng)x=1時(shí)y=+x-2=-1,
當(dāng)x=2時(shí)y=+x-2=1,
可知點(diǎn)B′、C′在拋物線上.
點(diǎn)評(píng):此題主要考查了等腰直角三角形的性質(zhì)以及全等三角形的判定等知識(shí),注意利用旋轉(zhuǎn)前后圖形的性質(zhì)得出Rt△AB′M≌Rt△BAN,進(jìn)而得出△AC′P≌△CAO是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(27):2.7 最大面積是多少(解析版) 題型:解答題

如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______,其頂點(diǎn)坐標(biāo)為______;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省蘇州市九年級(jí)(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______,其頂點(diǎn)坐標(biāo)為______;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(27):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______,其頂點(diǎn)坐標(biāo)為______;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(28):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______,其頂點(diǎn)坐標(biāo)為______;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案