【題目】如圖,在直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為(1,4)和(3,0),點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),且A、BC三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長最小時(shí),點(diǎn)C的坐標(biāo)是

A.00B.0,1C.0,2D.0,3

【答案】D

【解析】

解:作B點(diǎn)關(guān)于y軸對(duì)稱點(diǎn)B′點(diǎn),連接AB′,交y軸于點(diǎn)C′,
此時(shí)ABC的周長最小,

∵點(diǎn)A、B的坐標(biāo)分別為(1,4)和(3,0),
B′點(diǎn)坐標(biāo)為:(-3,0),則OB′=3

過點(diǎn)AAE垂直x軸,則AE=4OE=1
B′E=4,即B′E=AE,∴∠EB′A=B′AE,
C′OAE,
∴∠B′C′O=B′AE,

∴∠B′C′O=EB′A

B′O=C′O=3,
∴點(diǎn)C′的坐標(biāo)是(0,3),此時(shí)ABC的周長最小.
故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

18+(-10)+(-2)-(-5)

2

3

4-

5

6

7)(×4

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠ACB=2∠B,(1)如圖,當(dāng)∠C=90°AD∠ABC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.請(qǐng)證明AB=AC+CD;

2如圖,當(dāng)∠C≠90°,AD∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論,不要求證明;

如圖,當(dāng)∠C≠90°,AD△ABC的外角平分線時(shí),線段AB、ACCD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

點(diǎn)AB、C為數(shù)軸上三點(diǎn),如果點(diǎn)CAB之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱點(diǎn)C{AB}的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D{BA}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5

1)數(shù)     所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù)     所表示的點(diǎn)是{N,M}的奇點(diǎn);

2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),PAB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,P是線段AB上的一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點(diǎn)E、F、G、H分別是AC、AB、BD、CD的中點(diǎn),順次連接E、F、G、H.

(1)猜想四邊形EFGH的形狀,直接回答,不必說明理由;

(2)當(dāng)點(diǎn)P在線段AB的上方時(shí),如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結(jié)論還成立嗎?說明理由;

(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補(bǔ)全圖3,再判斷四邊形EFGH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點(diǎn).若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC為等邊三角形,點(diǎn)E、F分別在BCAB上,且CE=BF,AECF相交于點(diǎn)H.

1)求證:ACE≌△CBF;

2)求∠CHE的度數(shù);

3)如圖2,在圖1上以AC為邊長再作等邊ACD,將HE延長至G使得HG=CH,連接HDCG,求證:HD=AH+CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川蒼溪小王家今年紅心獼猴桃喜獲豐收,采摘上市20天全部銷售完,小王對(duì)銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪制成圖象,日銷售量y(單位:千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系如圖(1)所示,紅星獼猴桃的價(jià)格z(單位:元/千克)與上市時(shí)間x(天)的函數(shù)關(guān)系式如圖(2)所示.

1)觀察圖象,直接寫出日銷售量的最大值;

2)求小王家紅心獼猴桃的日銷量y與上市時(shí)間x的函數(shù)解析式;并寫出自變量的取值范圍.

3)試比較第6天和第13天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫推理理由

如圖:EFAD,∠1=∠2,∠BAC70°,把求∠AGD的過程填寫完整.

證明:∵EFAD

∴∠2 ( )

又∵∠1=∠2

∴∠1=∠3

AB ( )

∴∠BAC 180°( )

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

同步練習(xí)冊(cè)答案