精英家教網 > 初中數學 > 題目詳情

已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,  每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;

(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.

 

【答案】

解:(1)如圖,△A1B1C1即為所求,C1(2,-2)。(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10

【解析】(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點A1、B1、C1的位置,然后順次連接即可,再根據平面直角坐標系寫出點C1的坐標。

(2)延長BA到A2,使AA2=AB,延長BC到C2,使CC2=BC,然后連接A2C2即可,再根據平面直角坐標系寫出C2點的坐標,利用△A2BC2所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解:

△A2BC2的面積=6×4-×2×6-×2×4-×2×4=10。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•丹東)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,  每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;

(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.


查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(遼寧丹東卷)數學(帶解析) 題型:解答題

已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中, 每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

科目:初中數學 來源:2012年遼寧省丹東市中考數學試卷(解析版) 題型:解答題

已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

同步練習冊答案