【題目】已知拋物線yx2x1x軸的一個交點為(m0),則代數(shù)式m2m2014的值為_____

【答案】-2013

【解析】

利用“拋物線yx2x1x軸的一個交點為(m,0)”將“x=m,y=0代入拋物線的表達式中,得出m2m1,然后整體代入即可求出代數(shù)式的值.

解:∵拋物線yx2x1x軸的一個交點為(m,0)

m2m10,

m2m1,

m2m201412014=﹣2013

故答案為:﹣2013

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABEFDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,延長平行四邊形ABCD的邊DC到點E,使CE=DC,連接AE,交BC于點F,連接AC、BE.

(1)求證:BF=CF;

(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若﹣2amb43a2bn+1是同類項,則m+n的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù) 的圖象與x軸與交于點A、B(2,0),與y軸交于點C,∠ACB=90o

(1)求二次函數(shù)解析式;

(2)直線軸平行,分別交線段AB、CB于點E、F,且與拋物線交于點P

①求線段PF取得最大值時,OE的長;

②四邊形ACPB的面積是否存在最大值?如果存在求出此最大值和點P的坐標;如果不存在,說明理由.

(3)不解方程組,直接寫出的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形內(nèi)部,有一點P到三角形三個頂點的距離相等,則點P一定是(

A. 三角形三條角平分線的交點 B. 三角形三條垂直平分線的交點

C. 三角形三條中線的交點 D. 三角形三條高的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,點(2,4)在( 。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”.
(1)請問一元二次方程x2﹣3x+2=0是倍根方程嗎?如果是,請說明理由.
(2)若一元二次方程ax2+bx﹣6=0是倍根方程,且方程有一個根為2,求a、b的值?

查看答案和解析>>

同步練習冊答案