【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點(diǎn)DAB邊上的一點(diǎn),

(1)試說明:∠EAC=∠B

(2)若AD=15,BD=36,求DE的長.

(3)若點(diǎn)DA、B之間移動(dòng),當(dāng)點(diǎn)D為 時(shí),ACDE互相平分.

(直接寫出答案,不必說明理由)

【答案】(1)證明見解析(2)39 (3)AB的中點(diǎn)

【解析】試題分析

1)先由∠ACB∠ECD90可得∠ECA=∠DCB,再由“SAS”證△ECA≌△DCB可得結(jié)論;

2)由△ECA≌△DCB可得:AE=BD=36,∠EAC=∠B=45°可證∠DAE=90°從而得到△ADE是直角三角形,再由勾股定理可求得DE的長;

3如圖,若ACDE互相平分,由DCE=90°,易得CO=AO=DE=OD=OE,從而可得ODA=OAD=45°,并由此得到∠DOA=90°,再證△COD為等腰直角三角形,可得∠CDO=45°,這樣CDA=CDO+ODA=90°,即CDAB,∴點(diǎn)DAB的中點(diǎn).

試題解析

1∵∠ACB=∠ECD=90°,

∴∠ACB-∠ACD =∠ECD-∠ACD,

∴∠ECA∠DCB ,

∵△ACB△ECD都是等腰三角形,

∴ECDC,ACBC,

∴△ACE≌△BCD,

∴∠EAC∠B.

2∵△ACE≌△BCD,

∴AEBD36,

∵∠EAC∠B45 °,

∴∠EAD∠EAC∠CAD90°,

RtADE中, ,

∴DE2=152+362

∴DE39.

3)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),ACDE互相平分,理由如下

∵AC=BC,DAB中點(diǎn),∠ACB=90°,

CD=AB=ADCDA=90°,

∴∠DCA=∠DAC=45°

∵∠ECD=90°,

∴∠ECO=45°=∠DCA

∵CD=CE,

∴CO為△DCE的中線.

∵∠CDA=90°∠CDE=45°,

∴∠ODA=45°=∠CDE,

又∵CD=AD,

∴DO△ADC的中線.

∴ACDE互相平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長度),CD=4(單位長度),點(diǎn)A在數(shù)軸上表示的數(shù)是﹣10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以6個(gè)單位長度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以2個(gè)單位長度/秒的速度向左勻速運(yùn)動(dòng).

(1)問運(yùn)動(dòng)多少時(shí)BC=8(單位長度)?
(2)當(dāng)運(yùn)動(dòng)到BC=8(單位長度)時(shí),點(diǎn)B在數(shù)軸上表示的數(shù)是;
(3)P是線段AB上一點(diǎn),當(dāng)B點(diǎn)運(yùn)動(dòng)到線段CD上時(shí),是否存在關(guān)系式 =3,若存在,求線段PD的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A表示的數(shù)是-5 , 點(diǎn)B到點(diǎn)A的距離是3, 則點(diǎn)B所表示的數(shù)是________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣a234a 22xx+1+x+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=2x﹣4向上平移5個(gè)單位后,所得直線的表達(dá)式是________.那么將直線y=2x﹣4沿x軸向右平移3個(gè)單位得到的直線方程是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外小組的同學(xué)們?cè)谏鐣?huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭某月的用電量,如表所示:

用電量(度)

120

140

160

180

200

戶數(shù)

2

3

6

7

2

則這20戶家庭該月用電量的眾數(shù)和中位數(shù)分別是( )
A.180,160
B.160,180
C.160,160
D.180,180

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.

(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)D為等邊ABC的邊BC的中點(diǎn),ABBD________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,P為AB上一點(diǎn), Q為BC延長線上一點(diǎn),且PA=CQ,連PQ交AC邊于D, PD=DQ,證明:△ABC為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案