如圖(1),我們將相同的兩塊含30°角的直角三角尺Rt△DEF與Rt△ABC疊合,使DE在AB上,DF過點(diǎn)C,已知AC=DE=6。將圖(1)中的△DEF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)(DF與AB不重合),使邊DF、DE分別交AC、BC于點(diǎn)P、Q,如圖(2)。

(1)求證:△CQD∽△APD

(2)連結(jié)PQ,設(shè)AP=x,求面積S△PCQ 關(guān)于x的函數(shù)關(guān)系式;

(3)將圖(1)中的△DEF 向左平移(A、D不重合),使邊FD、FE分別交AC、BC于點(diǎn)M、N,如圖(3),連結(jié)MN,試問△MCN面積是否存在最大值、如不存在,請(qǐng)說明理由;如存在請(qǐng)求出S△MCN 的最大值,

 

【答案】

(1)∵∠F=∠B=30°,∠ACB=∠BDF=90°

∴∠BCD=∠A=60°,

∵∠ADP+∠PDC=90°,∠CDE+∠PDC=90°

∴△CQD∽△APD

(2)∵在Rt△ADC中,AD=3,DC=3

又∵△CQD∽△APD,CQ=x.

∴SPCQ=

(3)△BEN是等腰三角形.BE=6-t,BN=

SMCN= 

S△MCN 的最大值為

【解析】(1)易得∠BCD=∠A=60°,∠ADP=∠CDE,那么可得△CQD∽△APD;

(2)利用相似可得CQ=x,那么PC=6-x.可表示出SPCQ;

(3)由外角∠FEN=60°,∠B=30°,可得∠BNE=30°,∴NE=BN,那么△BEN是等腰三角形.易得AD=t,AB=12,那么BE=12-AD-DE=6-t.過E作EG⊥BN于點(diǎn)G.利用30°的三角函數(shù)可求得BG,進(jìn)而求得BN,然后利用t表示出MC、CN,即可表示出所求面積,再求出S△MCN 的最大值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi)取一點(diǎn)O,過點(diǎn)O作兩條夾角為60°的數(shù)軸,使它們以點(diǎn)O為公共原點(diǎn)且具有相同的單位長(zhǎng)度,這樣在平面內(nèi)建立的坐標(biāo)系稱為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標(biāo)系,對(duì)于斜坐標(biāo)平面內(nèi)的任意一點(diǎn)P,過點(diǎn)P分別作b軸、a軸的平行線交a軸、b軸于點(diǎn)M、N,若點(diǎn)M、N分別在a軸、b軸上所對(duì)應(yīng)的實(shí)數(shù)為m與n,則稱有序?qū)崝?shù)對(duì)(m,n)為點(diǎn)P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個(gè)點(diǎn)P與有序?qū)崝?shù)對(duì)(m,n)之間是相互唯一確定的.
精英家教網(wǎng)
(1)請(qǐng)寫出圖2(其中虛線均平行于a軸或b軸)中點(diǎn)P的坐標(biāo),并在圖中標(biāo)出點(diǎn)Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點(diǎn)A(1,4)、B(1,-1)、C(6,-1).
精英家教網(wǎng)
①判斷△ABC的形狀,并簡(jiǎn)述理由;
②如果點(diǎn)D在邊BC上,且其坐標(biāo)為(2.5,-1),試問:在邊BC上是否存在點(diǎn)E使△ACE與△ABD相全等?如有,請(qǐng)寫出點(diǎn)E的坐標(biāo),并說明它們?nèi)鹊睦碛桑蝗鐩]有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動(dòng)過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動(dòng)之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動(dòng)盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小柱從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動(dòng)過程的規(guī)律,計(jì)算n=6時(shí),h(6)=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•南京二模)閱讀材料,回答問題:
如果二次函數(shù)y1的圖象的頂點(diǎn)在二次函數(shù)y2的圖象上,同時(shí)二次函數(shù)y2的圖象的頂點(diǎn)在二次函數(shù)y1的圖象上,那么我們稱y1的圖象與y2的圖象相伴隨.
例如:y=(x+1)2+2圖象的頂點(diǎn)(-1,2)在y=-(x+3)2+6的圖象上,同時(shí)y=-(x+3)2+6圖象的頂點(diǎn)
(-3,6)也在y=(x+1)2+2的圖象上,這時(shí)我們稱這兩個(gè)二次函數(shù)的圖象相伴隨.

(1)說明二次函數(shù)y=x2-2x-3的圖象與二次函數(shù)y=-x2+4x-7的圖象相伴隨;
(2)如圖,已知二次函數(shù)y1=
14
(x+1)2-2圖象的頂點(diǎn)為M,點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),將二次函數(shù)y1的圖象繞點(diǎn)P旋轉(zhuǎn)180°得到一個(gè)新的二次函數(shù)y2的圖象,且旋轉(zhuǎn)前后的兩個(gè)函數(shù)圖象相伴隨,y2的圖象的頂點(diǎn)為N.
①求二次函數(shù)y2的關(guān)系式;
②以MN為斜邊作等腰直角△MNQ,問y軸上是否存在滿足要求的點(diǎn)Q?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東淄博卷)數(shù)學(xué) 題型:選擇題

相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動(dòng)過程不許以大盤壓小盤,不得把盤子放到柱子之外。移動(dòng)之日,喜馬拉雅山將變成一座金山。

設(shè)h(n) 是把n個(gè)盤子從1柱移到3柱過程中移動(dòng)盤子知最少次數(shù)

n=1時(shí),h(1)=1

n=2時(shí),小盤    2柱,大盤    3柱,小柱從2柱    3柱,完成。即h(2)=3

n=3時(shí),小盤    3柱,中盤    2柱,小柱從3柱    2柱。 [即用h(2)

方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成

我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動(dòng)過程的規(guī)律,計(jì)算n=6時(shí), h(6)=

A.11        B.31       C.63     D.127  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣西百色市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動(dòng)過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動(dòng)之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動(dòng)盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動(dòng)過程的規(guī)律,計(jì)算n=6時(shí),h(6)=( )

A.11
B.31
C.63
D.127

查看答案和解析>>

同步練習(xí)冊(cè)答案