如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標(biāo)為(-1,0).則下面的四個結(jié)論:
①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時,x<-1或x>2.
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:根據(jù)對稱軸為x=1可判斷出2a+b=0正確,當(dāng)x=-2時,4a-2b+c<0,根據(jù)開口方向,以及與y軸交點可得ac<0,再求出A點坐標(biāo),可得當(dāng)y<0時,x<-1或x>3.
解答:解:∵對稱軸為x=1,
∴x=-=1,
∴-b=2a,
∴①2a+b=0,故此選項正確;
∵點B坐標(biāo)為(-1,0),
∴當(dāng)x=-2時,4a-2b+c<0,故此選項正確;
∵圖象開口向下,∴a<0,
∵圖象與y軸交于正半軸上,
∴c>0,
∴ac<0,故ac>0錯誤;
∵對稱軸為x=1,點B坐標(biāo)為(-1,0),
∴A點坐標(biāo)為:(3,0),
∴當(dāng)y<0時,x<-1或x>3.,
故④錯誤;
故選:B.
點評:此題主要考查了二次函數(shù)與圖象的關(guān)系,關(guān)鍵掌握二次函數(shù)y=ax2+bx+c(a≠0)
①二次項系數(shù)a決定拋物線的開口方向和大。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;IaI還可以決定開口大小,IaI越大開口就越。
②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左; 當(dāng)a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)
③.常數(shù)項c決定拋物線與y軸交點. 拋物線與y軸交于(0,c).
④拋物線與x軸交點個數(shù).
△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
7
9
3
),且頂點C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標(biāo);
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標(biāo)原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達(dá)30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習(xí)冊答案