【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長DA和QP交于點(diǎn)O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).

發(fā)現(xiàn):如圖2,當(dāng)點(diǎn)P恰好落在BC邊上時,求a的值即陰影部分的面積;
拓展:如圖3,當(dāng)線段OQ與CB邊交于點(diǎn)M,與BA邊交于點(diǎn)N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時,直接寫出sinα的值.

【答案】解:發(fā)現(xiàn):如圖2,

設(shè)半圓K與PC交點(diǎn)為R,連接RK,過點(diǎn)P作PH⊥AD于點(diǎn)H,

過點(diǎn)R作RE⊥KQ于點(diǎn)E,在Rt△OPH中,PH=AB=1,OP=2,

∴∠POH=30°,

∴α=60°﹣30°=30°,

∵AD∥BC,

∴∠RPO=∠POH=30°,

∴∠RKQ=2×30°=60°,

∴S扇形KRQ= = ,

在Rt△RKE中,RE=RKsin60°= ,

∴SPRK= RE= ,

∴S陰影= +

拓展:如圖5,

∵∠OAN=∠MBN=90°,∠ANO=∠BNM,

∴△AON∽△BMN,

,即 ,

∴BN= ,

如圖4,

當(dāng)點(diǎn)Q落在BC上時,x取最大值,作QF⊥AD于點(diǎn)F,BQ=AF= ﹣AO=2 ﹣1,

∴x的取值范圍是0<x≤2 ﹣1;

探究:半圓K與矩形ABCD的邊相切,分三種情況;

①如圖5,

半圓K與BC相切于點(diǎn)T,設(shè)直線KT與AD,OQ的初始位置所在的直線分別交于點(diǎn)S,O′,

則∠KSO=∠KTB=90°,

作KG⊥OO′于G,在Rt△OSK中,

OS= =2,

在Rt△OSO′中,SO′=OStan60°=2 ,KO′=2

在Rt△KGO′中,∠O′=30°,

∴KG= KO′= ,

∴在Rt△OGK中,sinα= = = ,

②當(dāng)半圓K與AD相切于T,如圖6,

同理可得sinα= = = = ;

③當(dāng)半圓K與CD切線時,點(diǎn)Q與點(diǎn)D重合,且為切點(diǎn),

∴α=60°,

∴sinα=sin60°= ;

綜上所述sinα的值為:


【解析】首先設(shè)半圓K與PC交點(diǎn)為R,連接RK,過點(diǎn)P作PH⊥AD于點(diǎn)H,過點(diǎn)R作RE⊥KQ于點(diǎn)E,根據(jù)直角三角形的直角邊與斜邊的關(guān)系得出∠POH=30° ;進(jìn)而求得α的度數(shù),根據(jù)平行線的性質(zhì)及圓周角定理得出∠RKQ的度數(shù),然后利用S陰影=S扇形KRQ+SPRK求得答案;
拓展:如圖5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN,根據(jù)相似三角形對應(yīng)邊成比例即可求得BN,如圖4,當(dāng)點(diǎn)Q落在BC上時,x取最大值,作QF⊥AD于點(diǎn)F,根據(jù)勾股定理求出BQ=AF的值,則可求出x的取值范圍;
探究:半圓K與矩形ABCD的邊相切,分三種情況:①半圓K與BC相切于點(diǎn)T,②當(dāng)半圓K與AD相切于T,③當(dāng)半圓K與CD切線時,點(diǎn)Q與點(diǎn)D重合,且為切點(diǎn);分別求解即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)EEF⊥DE,交BC的延長線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足若 = ,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖①,在△ABC中,點(diǎn)D、F在AB上,點(diǎn)E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,則EG= , =

(2)如圖②,在△ABC中點(diǎn)D、F在AB上,點(diǎn)E,G在AC上,且DE∥FG∥BC,以AD,DF,F(xiàn)B為邊構(gòu)造△ADM(即AM=BF,MD=DF),以AE,EG,GC為邊構(gòu)造△AEN(即AN=GC,NE=EG),求證:∠M=∠N.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了節(jié)約用水,采用分段收費(fèi)標(biāo)準(zhǔn).若某戶居民每月應(yīng)交水費(fèi)y()與用水量x()之間關(guān)系的圖象如圖,根據(jù)圖象回答:

(1)該市自來水收費(fèi)時,若使用不足5噸,則每噸收費(fèi)多少元?超過5噸部分每噸收費(fèi)多少元?

(2)若某戶居民每月用水3.5噸,應(yīng)交水費(fèi)多少元?若某月交水費(fèi)17元,該戶居民用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個或乙種部件10個,2個甲種部件和3個乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,AB=5, AE平分∠DAB交BC所在直線于點(diǎn)E,CE=2,則AD=_______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AFDE,BAF上一點(diǎn),∠ABC60°,交EDCCM平分∠BCE,∠MCN90°

1)求∠DCN的度數(shù);

2)若∠CBF的平分線交CNN,求證:BNCM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一道題,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”意思是:同樣時間段內(nèi),走路快的人能走100步,走路慢的人只能走60步(兩人的步長相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(兩人走的路線相同)?試求解這個問題.

查看答案和解析>>

同步練習(xí)冊答案