【題目】如圖,在矩形ABCD中,AB=,AD=3,點(diǎn)E是邊AD靠近A的三等分點(diǎn),點(diǎn)PBC延長(zhǎng)線上一點(diǎn),且EPEB,點(diǎn)GBE上任意一點(diǎn),過(guò)GGHBP,交EP于點(diǎn)H.將EGH繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)α0α90°),得到EMNM、N分別是GH的對(duì)應(yīng)點(diǎn)).

1)求BP的長(zhǎng);

2)求的值;

3)如圖當(dāng)α=60°時(shí),點(diǎn)M恰好落在GH上,延長(zhǎng)BMNP于點(diǎn)Q,取EP的中點(diǎn)K,連接QK.若點(diǎn)G在線段EB上運(yùn)動(dòng),問(wèn)QK是否有最小值?若有最小值,請(qǐng)求出點(diǎn)G運(yùn)動(dòng)到EB的什么位置時(shí),QK有最小值及最小值是多少,若沒(méi)有最小值,請(qǐng)說(shuō)明理由.

【答案】1PB=4;(2=;(3點(diǎn)G運(yùn)動(dòng)到EB的中點(diǎn)位置時(shí),QK有最小值,最小值為1

【解析】

1)由勾股定理得BE=2,易證BAE∽△PEB,從而得=,即可求解;

2)由tanABE==,可得∠ABE=30°,結(jié)合旋轉(zhuǎn)的性質(zhì)得PE=EB,EN=EM,∠BEM=PEN,進(jìn)而得出BEM∽△PEN,即可求解;

3)取PB的中點(diǎn)O,連接OQ,OK.設(shè)BQPEJ,易得BEJ=PQJ=90°,從而得到OQ =2OK=1,由QK≥OQ-OK,可得QK的最小值為1,此時(shí)O,K,Q共線,然后根據(jù)α=60°證明EGM是等邊三角形,求出∠EBM=30°,∠GMB=30°即可得解.

1)如圖①中,

∵四邊形ABCD是矩形,

∴∠A=ABC=90°

AE=AD=1,AB=

BE==2,

BEPE

∴∠PEB=90°,

∴∠ABE+CBE=90°,∠CBE+EPB=90°

∴∠ABE=EPB,

∵∠A=BEP=90°

∴△BAE∽△PEB,

=,

PB==4;

2)∵在RtABE中, tanABE==

∴∠ABE=30°,

∵∠ABC=90°,

∴∠EBC=60°

GHBC,

∴∠EGH=EBC=EMN=60°

∵∠MEN=GEH=90°,

PE=EB,EN=EM,

==,

∵∠PEB=MEN=90°,

∴∠BEM=PEN

∴△BEM∽△PEN,

==;

3)如圖2中,取PB的中點(diǎn)O,連接OQ,OK.設(shè)BQPEJ

∵△BEM∽△PEN,

∴∠EBM=EPN,

∵∠BJE=PJQ,

∴∠BEJ=PQJ=90°,

BO=OP,

OQ=PB=2,

PO=OB,PK=KE,

OK=BE=1

QK≥OQ-OK=1,

QK的最小值為1,此時(shí)O,K,Q共線,

OQBE,

∴∠QOP=EBP=60°,

α=60°時(shí),點(diǎn)M恰好落在GH上,

∴∠EGM=60°

EGM是等邊三角形,

又∵OQ=OB

∴∠OBQ=×60°=30°,

∴∠EBM=EBP-OBQ=60°-30°=30°

∴∠GMB=EGM-EBM=60°-30°=30°,

BG=GM=GE,

∴點(diǎn)GBE的中點(diǎn),

綜上所述:點(diǎn)G運(yùn)動(dòng)到EB的中點(diǎn)位置時(shí),QK有最小值,最小值為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBCAB51213,O在△ABC內(nèi)自由移動(dòng),若O的半徑為1,且圓心O在△ABC內(nèi)所能到達(dá)的區(qū)域的面積為,則△ABC的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下表:

x

0

1

2

ax2

   

1

   

ax2+bx+c

3

   

3

1)求a、b、c的值,并在表內(nèi)空格處填入正確的數(shù);

2)根據(jù)上面的結(jié)果解答問(wèn)題:

在方格紙中畫出函數(shù)yax2+bx+c的圖象;

根據(jù)圖象回答:當(dāng)x的取值范圍是   時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 定義:在凸四邊形中,我們把兩組對(duì)邊乘積的和等于對(duì)角線的乘積的四邊形稱為完美四邊形

1)在正方形、矩形、菱形中,一定是完美四邊形的是______

2)如圖1,在△ABC中,AB=2,BC=,AC=3,D為平面內(nèi)一點(diǎn),以A、B、CD四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形為完美四邊形,若DA,DC的長(zhǎng)是關(guān)于x的一元二次方程x2-(m+3)x+(5m2-2m+13)=0(其中m為常數(shù))的兩個(gè)根,求線段BD的長(zhǎng)度.

3)如圖2,在完美四邊形”EFGH中,∠F=90°EF=6,FG=8,求完美四邊形”EFGH面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校七年級(jí)學(xué)生作業(yè)時(shí)間情況,隨機(jī)抽取了該校七年級(jí)部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下的統(tǒng)計(jì)圖.

作業(yè)時(shí)間分組表(單位:小時(shí))

作業(yè)時(shí)間

人數(shù)

頻率

A

1≤x≤1.5

5

0.1

B

1.5≤x≤2

20

b

C

2≤x≤2.5

m

n

D

x≥2.5

7

0.14

小計(jì)

a

1

1)統(tǒng)計(jì)圖中的a=______;b=______m=______;n=______

2)求出C組的扇形的圓心角度數(shù).

3)如果該校七年級(jí)學(xué)生共400名,試估計(jì)這400名生作業(yè)時(shí)間在B組和C組的人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度為15 m),用籬笆圍成一個(gè)矩形花園ABCD,中間再用一道籬笆隔成兩個(gè)小矩形,共用去籬笆42 m.設(shè)平行于墻的一邊BC長(zhǎng)為x m,花園的面積為S m2

1)求Sx之間的函數(shù)解析式;

2)問(wèn)花園面積可以達(dá)到120平方米嗎?如果能,花園的長(zhǎng)和寬各是多少?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x+b與雙曲線y=k0)交于點(diǎn)A、D,直線ADy軸、x軸于點(diǎn)B、C,直線y=-+n過(guò)點(diǎn)A,與雙曲線y=k0)的另一個(gè)交點(diǎn)為點(diǎn)E,連接BE、DE,若SABE=4,且SABESDBE=34,則k的值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一 列數(shù)是7、93、7、6、9、118、 2、9、10,中位數(shù)是多少?這列數(shù)若再加入31000兩個(gè)數(shù),那么中位數(shù)會(huì)改變嗎?平均數(shù)又會(huì)有什么變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)E、F、G分別在邊AB、AD、CD上,EGBF交于點(diǎn)I,AE=2BF=EG,DG>AE,則DI的最小值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案