3.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG:②BG=GC;③AG∥CF;④∠GAE=45°.
則正確結(jié)論的個數(shù)有( 。
A.1B.2C.3D.4

分析 根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6-x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,推出AG∥CF,根據(jù)全等得出∠DAE=∠FAE,∠BAG=∠FAG.

解答 解:∵四邊形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折疊得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴Rt△ABG≌Rt△AFG(HL).
∴①正確;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2
∵CG=6-x,CE=4,EG=x+2,
∴(6-x)2+42=(x+2)2,解得:x=3.
∴BG=GF=CG=3.
∴②正確;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正確;
∵△ADE沿AE折疊得到△AFE,
∴△DAE≌△FAE.
∴∠DAE=∠FAE.
∵△ABG≌△AFG,
∴∠BAG=∠FAG.
∵∠BAD=90°,
∴∠EAG=∠EAF+∠GAF=$\frac{1}{2}$×90°=45°.
∴④正確.
故選:D.

點評 本題考查了正方形性質(zhì),折疊性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,平行線的判定等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-1,0),B(-3,0),與y軸交于C(0,3).

(1)求二次函數(shù)的解析式和直線AC的解析式.
(2)點P在拋物線上,以P為圓心,$\frac{{\sqrt{10}}}{2}$為半徑的圓與直線AC相切,求點P坐標.
(3)如圖2,點D、E均在拋物線上,連接OD、BD、DE,且BD=OD,∠CDO=∠EDB,求點D和點E坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.計算:$\sqrt{5}$($\sqrt{5}$+$\frac{1}{\sqrt{5}}$)=6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,將一張左、右破損的矩形紙片ABCD沿EF折疊后,D,C兩點分別落在D′,C′的位置,量得∠EFB=65°,則∠AED′的大小為50°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.小王記錄了某地15天的最高氣溫如表:
 最高氣溫(℃) 2122 25 24 23 26 
 天數(shù) 12 4 3 3 2 
那么這15天每天的最高氣溫的中位數(shù)是( 。
A.22B.23C.23.5D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.方程$\frac{3}{x}$=$\frac{2}{x-2}$的解是x=6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在13×6的正方形網(wǎng)格中(每個小正方形的邊長均為1)有線段AB,點A、B均在正方形的頂點上.
(1)將線段AB繞點B順時針旋轉(zhuǎn)90°得到線段BC,連接AC,畫出△ABC;
(2)以AB為對角線作平行四邊形ABCD,畫出平行四邊形ADBC;
(3)直接寫出平行四邊形ADBC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.將數(shù)字0.00025用科學(xué)記數(shù)法可表示為2.5×10-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.一個不等式組中兩個不等式的解集在同一數(shù)軸上的表示如圖所示,這個不等式組的解集為( 。
A.x<-1B.x≤1C.-1<x≤1D.x≥1

查看答案和解析>>

同步練習冊答案