如圖菱形ABCD的邊長為2,對角線BD=2,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.同時指出△BCF是由△BDE經(jīng)過如何變換得到?

(1)證明:∵菱形ABCD的邊長為2,對角線BD=2,
∴AB=AD=BD=2,BC=CD=BD=2,
∴△ABD與△BCD都是等邊三角形,
∴∠BDE=∠C=60°,
∵AE+CF=2,
∴CF=2-AE,
又∵DE=AD-AE=2-AE,
∴DE=CF,
在△BDE和△BCF中,,
∴△BDE≌△BCF(SAS);

(2)解:△BEF是等邊三角形.理由如下:
由(1)可知△BDE≌△BCF,
∴BE=BF,∠DBE=∠CBF,
∴∠EBF=∠DBE+∠DBF=∠CBF+∠DBF=∠DBC=60°,
∴△BEF是等邊三角形,
由圖可知,△BDE繞點B順時針旋轉(zhuǎn)60°即可得到△BCF.
分析:(1)先判定△ABD與△BCD都是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠BDE=∠C=60°,再求出DE=CF,然后利用“邊邊角”證明兩三角形全等;
(2)根據(jù)全等三角形對應邊相等可得BE=CF,全等三角形對應角相等可得∠DBE=∠CBF,然后求出∠EBF=60°,再根據(jù)等邊三角形的判定得解,利用旋轉(zhuǎn)變換解答.
點評:本題考查了菱形的四條邊都相等的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),以及旋轉(zhuǎn)變換,根據(jù)菱形的對角線BD與菱形的邊相等判定出等邊三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•泰寧縣質(zhì)檢)如圖菱形ABCD的邊長為2,對角線BD=2,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.同時指出△BCF是由△BDE經(jīng)過如何變換得到?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(8分).已知,如圖菱形ABCD的邊長為13cm,對角線BD長為10cm,
求(1)對角線AC的長度
(2)菱形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇省大豐市第七中學九年級第一學期期中考試數(shù)學卷 題型:解答題

(8分).已知,如圖菱形ABCD的邊長為13cm,對角線BD長為10cm,
求(1)對角線AC的長度
(2)菱形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源:2011年福建省三明市泰寧縣初中學業(yè)質(zhì)量檢查數(shù)學試卷(解析版) 題型:解答題

如圖菱形ABCD的邊長為2,對角線BD=2,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.同時指出△BCF是由△BDE經(jīng)過如何變換得到?

查看答案和解析>>

同步練習冊答案