如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
【答案】分析:(1)根據(jù)貓頭鷹從C點觀測F點的俯角為53°,可知∠DFG=90°-53°=37°,在△DFG中,已知DF的長度,求出DG的長度,若DG>3,則看不見老鼠,若DG<3,則可以看見老鼠;
(2)根據(jù)(1)求出的DG長度,求出AG的長度,然后在Rt△CAG中,根據(jù)=sin∠C=sin37°,即可求出CG的長度.
解答:解:(1)能看到;
由題意得,∠DFG=90°-53°=37°,
=tan∠DFG,
∵DF=4米,
∴DG=4×tan37°=4×0.75=3(米),
故能看到這只老鼠;

(2)由(1)得,AG=AD+DG=2.7+3=5.7(米),
=sin∠C=sin37°,
則CG===9.5(米).
答:要捕捉到這只老鼠,貓頭鷹至少要飛9.5米.
點評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形并解直角三角形,利用三角函數(shù)求解相關(guān)線段,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•聊城)如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一只貓頭鷹蹲在一顆樹AC的點B處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮。疄榱藢ふ疫@只老鼠,貓頭鷹向上飛至樹頂C處.已知點B在AC上,DF=4米,短墻底部D與樹的底部A的距離AD=2.7米,貓頭鷹從C點觀察F點的俯角為,老鼠躲藏處M距D點3米,且點M在DE上.

(參考數(shù)據(jù):).

⑴貓頭鷹飛至C處后,能否看到這只老鼠?為什么?

⑵要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東聊城卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?

(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題

如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

查看答案和解析>>

同步練習(xí)冊答案