【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過點(diǎn)CCD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB

1)判斷BD與⊙O的位置關(guān)系,并說明理由;

2)若CD=15,BE=10,tanA=,求⊙O的直徑.

【答案】(1BD⊙O的切線,理由見解析;(2

【解析】試題分析:(1)連接OB,由已知條件易證OBD=90°,即可證明BDO的切線;(2)過點(diǎn)DDGBEG,根據(jù)等腰三角形的性質(zhì)得到EG=BE=5,由兩角相等的三角形相似,ACE∽△DGE,利用相似三角形對應(yīng)角相等得到sinEDG=sinA=,在RtEDG中,利用勾股定理求出DG的長,根據(jù)三角形相似得到比例式,代入數(shù)據(jù)即可得到結(jié)果.

試題解析:(1)證明:連接OB,

∵OB=OADE=DB,

∴∠A=∠OBA,∠DEB=∠ABD,

∵CD⊥OA

∴∠A+∠AEC=∠A+∠DEB=90°,

∴∠OBA+∠ABD=90°

∴OB⊥BD,

∴BD⊙O的切線;

2)如圖,過點(diǎn)DDG⊥BEG,

∵DE=DB,

EG=BE=5,

∵∠ACE=∠DGE=90°∠AEC=∠GED,

∴∠GDE=∠A,

∴△ACE∽△DGE,

sinEDG=sinA==,即CE=13,

Rt△ECG中,

∵DG==12

∵CD=15,DE=13

∴DE=2,

∵△ACE∽△DGE,

=,

AC=DG=

∴⊙O的直徑2OA=4AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,AC⊙O的切線,OC⊙O于點(diǎn)DBD的延長線交AC于點(diǎn)E

1)求證:∠1=∠CAD;

2)若AE=EC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(x﹣2)2=k+2有解,則k的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某項(xiàng)工程由甲乙兩隊(duì)合作12天可以完成,供需工程費(fèi)用13800,乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多150。

1甲乙兩隊(duì)單獨(dú)完成這項(xiàng)工程分別需要多少天?

2若工程管理部門決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成這項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件工藝品進(jìn)價(jià)為100元,標(biāo)價(jià)135元售出,每天可售出100. 根據(jù)銷售統(tǒng)計(jì),一件工藝品每降價(jià)1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價(jià)的錢數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)(1-2a,a-2)在第三象限的角平分線上,求a的值及點(diǎn)的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 不是正數(shù)的數(shù)一定是負(fù)數(shù)

B. 負(fù)數(shù)比0

C. 3b一定是正數(shù)

D. 0是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC≌△DEF,∠A60°,∠F50°,點(diǎn)B的對應(yīng)頂點(diǎn)是點(diǎn)E,則∠B的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)三角形的兩邊長分別為34,則第三邊的長不可能的是(  )

A. 2 B. 3 C. 4 D. 1

查看答案和解析>>

同步練習(xí)冊答案