如圖,將第1題中的各個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3,所得的圖案與原圖案相比有什么變化?

 

答案:
解析:

橫坐標(biāo)保持不變,縱坐標(biāo)分別加3后,所得各點(diǎn)坐標(biāo)為:(03),(-5,7),(-3,3),(-54),(-5,2)(-3,3),(-4,1)(0,3),所得圖案與原圖案相比,形狀大小都不變,整條魚向上平移了3個(gè)單位.

 


提示:

平面直角坐標(biāo)的性質(zhì)

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、找規(guī)律
如圖①所示的是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖②,再分別連接圖②中間的小三角形三邊的中點(diǎn),得到圖③,按此方法繼續(xù)連接,請(qǐng)你根據(jù)每個(gè)圖中三角形的個(gè)數(shù)的規(guī)律完成各題.
(1)將下表填寫完整;
圖形編號(hào)
三角形個(gè)數(shù) 1 5      
(2)在第n個(gè)圖形中有
(4n-3)
個(gè)三角形;(用含挖的式子表示)
(3)按照上述方法,能否得到2005個(gè)三角形如果能,請(qǐng)求出n;如果不能,請(qǐng)簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)圖1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個(gè)數(shù)為:1+2+3+…+n=
 
;
精英家教網(wǎng)
精英家教網(wǎng)
(2)運(yùn)用第(1)題的結(jié)論,試求1+2+3+…+99的值;
(3)在一次數(shù)學(xué)活動(dòng)中,為了求
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+…+
1
2n
的值,小明設(shè)計(jì)了如圖3所示的邊長(zhǎng)為1的正方形圖形.請(qǐng)你利用這個(gè)幾何圖形求
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+…+
1
2n
的值為
 
;
(4)運(yùn)用第(3)題的結(jié)論,試求
5
6
+
11
12
+
23
24
+
47
48
+
95
96
+
191
192
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、書籍是人類進(jìn)步的階梯!為愛(ài)護(hù)書一般都將書本用封皮包好.
問(wèn)題1:現(xiàn)有精裝詞典長(zhǎng)、寬、厚尺寸如圖(1)所示(單位:cm),若按圖(2)的包書方式,將封面和封底各折進(jìn)去3cm.試用含a、b、c的代數(shù)式分別表示詞典封皮(包書紙)的長(zhǎng)是
2b+c+6
cm,寬是
a
cm;

問(wèn)題2:在如圖(4)的矩形包書紙皮示意圖中,虛線為折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長(zhǎng)即為折疊進(jìn)去的寬度.
(1)若有一數(shù)學(xué)課本長(zhǎng)為26cm、寬為18.5cm、厚為1cm,小海寶用一張面積為1260cm2的矩形紙包好了這本數(shù)學(xué)書,封皮展開(kāi)后如圖(4)所示.若設(shè)正方形的邊長(zhǎng)(即折疊的寬度)為x cm,則包書紙長(zhǎng)為
2x+38
cm,寬為
2x+26
cm(用含x的代數(shù)式表示).
(2)請(qǐng)幫小海寶列好方程,求出第(1)題中小正方形的邊長(zhǎng)x cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①所示的是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖②,再分別連接圖②中間的小三角形三邊的中點(diǎn),得到圖③,按此方法繼續(xù)連接,請(qǐng)你根據(jù)每個(gè)圖中三角形的個(gè)數(shù)的規(guī)律完成各題.

(1)將下表填寫完整;
圖形編號(hào)
三角形個(gè)數(shù) 1 5
9
9
13
13
17
17
(2)在第n個(gè)圖形中有
4n-3
4n-3
個(gè)三角形;(用含n的式子表示)
(3)按照上述方法,能否得到2013個(gè)三角形?如果能,請(qǐng)求出n;如果不能,請(qǐng)簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
(1)一個(gè)正數(shù)的平方根為3-a和2a+3,則這個(gè)正數(shù)是
81
81

(2)若x2+2x+y2-6y+10=0,則xy=
-1
-1

(3)已知a,b分別是6-
13
的整數(shù)部分和小數(shù)部分,則2a-b=
13
13

(4)閱讀下面的問(wèn)題,并解答問(wèn)題:
1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請(qǐng)?jiān)谙铝袡M線上填上合適的答案)
分析:由于PA,PB,PC不在同一個(gè)三角形中,為了解決本題我們可以將△ABP繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACP′處,此時(shí)可以利用旋轉(zhuǎn)的特征等知識(shí)得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′為
等邊
等邊
三角形,則∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
直角
直角
三角形,則∠PP′C=
90
90
度,從而得到∠APB=
150
150
度.
 2)請(qǐng)你利用第1)題的解答方法,完成下面問(wèn)題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點(diǎn),且∠EAF=45°,試說(shuō)明:EF2=BE2+FC2

查看答案和解析>>

同步練習(xí)冊(cè)答案