【題目】試確定實(shí)數(shù)a的取值范圍,使不等式組 恰有兩個(gè)整數(shù)解.

【答案】解:由 >0,兩邊同乘以6得3x+2(x+1)>0,解得x>﹣ , 由x+ (x+1)+a,兩邊同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,
∴原不等式組的解集為﹣ <x<2a.
又∵原不等式組恰有2個(gè)整數(shù)解,即x=0,1;
則2a的值在1(不含1)到2(含2)之間,
∴1<2a≤2,
∴0.5<a≤1
【解析】先求出不等式組的解集,再根據(jù)x的兩個(gè)整數(shù)解求出a的取值范圍即可.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的整數(shù)解的相關(guān)知識(shí)點(diǎn),需要掌握使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡(jiǎn)稱不等式組的解)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,-),點(diǎn)D在劣弧上,連結(jié)BDx軸于點(diǎn)C,且∠COD=CBO.

(1)求⊙M的半徑;

(2)求證:BD平分∠ABO;

(3)在線段BD的延長線上找一點(diǎn)E,使得直線AE恰為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x=3m+1,y=2+9m,那么用x的代數(shù)式表示y為(  

A. y=2x B. yx2 C. y=(x﹣1)2+2 D. yx2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,點(diǎn)C′在AC上,A′C′與AB相交于點(diǎn)D,則C′D=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校6名教師和234名學(xué)生集體外出活動(dòng),準(zhǔn)備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費(fèi)1000元;若租用2輛大車一輛小車共需租車費(fèi)1100元.
(1)求大、小車每輛的租車費(fèi)各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費(fèi)用不超過2300元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。

A. a3+a3a6B. a6÷a3a2C. a23a8D. a2a3a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2+x+2的值為3,則代數(shù)式2x2+2x+5的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小惠在紙上畫了一條數(shù)軸后,折疊紙面,使數(shù)軸上表示1的點(diǎn)與表示﹣3的點(diǎn)重合,若數(shù)軸上A,B兩點(diǎn)之間的距離為2014(A在B的左側(cè)),且A,B兩點(diǎn)經(jīng)上述折疊后重合,則A點(diǎn)表示的數(shù)為(
A.﹣1006
B.﹣1007
C.﹣1008
D.﹣1009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子從左到右的變形是因式分解的是(  )

A. a2+4a-21=a(a+4)-21

B. (a-3)(a+7)=a2+4a-21

C. a2+4a-21=(a-3)(a+7)

D. a2+4a-21=(a+2)2-25

查看答案和解析>>

同步練習(xí)冊(cè)答案