【題目】如圖,A為∠MON內(nèi)部一定點(diǎn),點(diǎn)P、Q分別為射線OM,ON上的動(dòng)點(diǎn),若△APQ的周長(zhǎng)最小時(shí),∠PAQ=40°,則∠MON=_____.
【答案】70°
【解析】
作A關(guān)于ON的對(duì)稱點(diǎn)E,A關(guān)于OM的對(duì)稱點(diǎn)F,連接EF交OM于P,ON于Q,此時(shí)△APQ的周長(zhǎng)最小=EF,由軸對(duì)稱的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.
作A關(guān)于ON的對(duì)稱點(diǎn)E,A關(guān)于OM的對(duì)稱點(diǎn)F,連接EF交OM于P,ON于Q,
此時(shí)△APQ的周長(zhǎng)最小=EF,
由軸對(duì)稱的性質(zhì)得到OE=OA=OF,∠EOQ=∠AOQ,∠FOP=∠AOP,
∴∠OEQ=∠OAQ,∠OFP=∠OAP,
∴∠OEF+∠OFE=∠OAQ+∠OAP=∠PAQ=40°,
∴∠EOF=180°﹣40°=140°,
∴∠MON=∠EOF=70°.
故答案為:70°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)是(0,2),點(diǎn)C是x軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)C在x軸上移動(dòng)時(shí),始終保持△ACP是等邊三角形(點(diǎn)A、C、P按逆時(shí)針?lè)较蚺帕校划?dāng)點(diǎn)C移動(dòng)到點(diǎn)O時(shí),得到等邊三角形AOB(此時(shí)點(diǎn)P與點(diǎn)B重合)
初步探究
(1)寫(xiě)出點(diǎn)B的坐標(biāo) ;
(2)點(diǎn)C在x軸上移動(dòng)過(guò)程中,當(dāng)?shù)冗吶切?/span>ACP的頂點(diǎn)P在第三象限時(shí),連接BP,求證:△AOC≌△ABP.
深入探究
(3)當(dāng)點(diǎn)C在x軸上移動(dòng)時(shí),點(diǎn)P也隨之運(yùn)動(dòng).探究點(diǎn)P在怎樣的圖形上運(yùn)動(dòng),請(qǐng)直接寫(xiě)出結(jié)論;
拓展應(yīng)用
(4)點(diǎn)C在x軸上移動(dòng)過(guò)程中,當(dāng)△POB為等腰三角形時(shí),直接寫(xiě)出此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,以點(diǎn)B為圓心,適當(dāng)長(zhǎng)為半徑的畫(huà)弧,分別交BA,BC于點(diǎn)M、N;再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則下列說(shuō)法中不正確的是()
A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過(guò)作直線,設(shè)交的平分線于點(diǎn),交
的外角平分線于點(diǎn).
探究:線段與的數(shù)量關(guān)系并加以證明;
當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿足什么條件時(shí),四邊形是正方形?
當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形會(huì)是菱形嗎?若是,請(qǐng)證明,若不是,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校九年級(jí)男生“引體向上”項(xiàng)目的訓(xùn)練情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿分15分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)汁圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(l)本次抽取樣本容量為_(kāi)___,扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是____度;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300名,請(qǐng)估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).
(1)畫(huà)出與三角形ABC關(guān)于y軸對(duì)稱的三角形A1B1C1;
(2)將三角形A1B1C1先向右平移2個(gè)單位,再向下平移1個(gè)單位,得到三角形A2B2C2,則三角形A2B2C2頂點(diǎn)坐標(biāo)分別為:A2 B2 C2 ;
(3)若點(diǎn)P(a,a﹣2)與點(diǎn)Q關(guān)于x軸對(duì)稱,PQ=2,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB⊥BC,BF=CF,∠C=30°,D是AC的中點(diǎn),E是CD的中點(diǎn),連接BE,AF交于G,連接DG.
(1)若E到BC的距離為2,求AB的長(zhǎng);
(2)證明:GD平分∠AGE;
(3)猜想BG,FG,GD,AF的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為所在平面內(nèi)一點(diǎn),且,,,垂足分別為點(diǎn)、,.
(1)如圖1,當(dāng)點(diǎn)在邊上時(shí),判斷的形狀;并證明你的結(jié)論;
(2)如圖2,當(dāng)點(diǎn)在內(nèi)部時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明:若不成立,請(qǐng)舉出反例(畫(huà)圖說(shuō)明,不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com