【題目】若方程﹣(m+3)x|m|﹣2﹣5=0是關(guān)于x的一元一次方程,則m= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)約是一種美德,節(jié)約是一種智慧.據(jù)不完全統(tǒng)計,全國每年浪費食物總量折合糧食可養(yǎng)活約3億5千萬人,350000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”) 和直角三角形全等的判定方法(即“HL”) 后, 我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.
【初步思考】
不妨將問題用符號語言表示為: 在△ABC和△DEF中, AC = DF, BC = EF, ∠B =∠E,
然后, 對∠B進行分類, 可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
【深入探究】
第一種情況: 當(dāng)∠B是直角時, △ABC≌△DEF.
(1) 如圖①, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E = 90°, 根據(jù)_____________, 可以知道Rt△ABC≌Rt△DEF.
第二種情況: 當(dāng)∠B是鈍角時, △ABC≌△DEF.
(2) 如圖②, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是鈍角.
求證: △ABC≌△DEF.
第三種情況: 當(dāng)∠B是銳角時, △ABC和△DEF不一定全等.
(3) 在△ABC和△DEF, AC = DF, BC = EF, ∠B = ∠E, 且∠B、∠E都是銳角, 請你用尺規(guī)在圖③中作出△DEF, 使△DEF和△ABC不全等. (不寫作法, 保留作圖痕跡)
(4) ∠B還要滿足什么條件, 就可以使△ABC≌△DEF ? 請直接寫出結(jié)論: 在△ABC和△DEF中, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是銳角, 若__________, 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】未來三年,國家將投入8 500億元用于緩解群眾“看病難,看病貴”問題.將8 500億元用科學(xué)記數(shù)法表示為
( )
A.0.85×104億元
B.8.5×103億元
C.8.5×104億元
D.85×102億元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com