將二次函數(shù)的圖象先向右平移一個單位,再沿x軸翻折到第一象限,然后向右平移一個單位,再沿y軸翻折到第二象限…以此類推,如果把向右平移一個單位再沿坐標(biāo)軸翻折一次記作1次變換,那么二次函數(shù)的圖象經(jīng)過2013次變換后,得到的圖象的函數(shù)解析式為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直角三角板ABC的斜邊AB=12 cm,∠A=30°,將三角板ABC繞C順時針旋轉(zhuǎn)90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使點(diǎn)B′落在原三角板ABC的斜邊AB上,則三角板A′B′C′平移的距離為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為等腰直角⊿ABC的斜邊(AB為定長線段),O為AB的中點(diǎn),P為AC延長線上的一個動點(diǎn),線段PB的垂直平分線交線段OC于點(diǎn)E,D為垂足,當(dāng)P點(diǎn)運(yùn)動時,給出下列四個結(jié)論,其中正確的個數(shù)是( )
①E為⊿ABP的外心; ②∠PEB=90°;
③PC·BE = OE·PB; ④CE + PC=.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,與是兩個全等的等腰三角形,,分別與、相交于點(diǎn)、,.
(1)圖中有哪幾對不全等的相似三角形,請把他們表示出來.
(2) 根據(jù)兩位同學(xué)對圖形的探索,試探究、、之間的關(guān)系,并證明.
| |||
| |||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)邊長為4的正方形的對角線長為a,下列關(guān)于a的四種說法: a是無理數(shù); a可以用數(shù)軸上的一個點(diǎn)來表示; 4<a<5; a是32的算術(shù)平方根。其中,所有正確說法的序號是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比、轉(zhuǎn)化、分類討論等思想方法和數(shù)學(xué)基本圖形在數(shù)學(xué)學(xué)習(xí)和解題中經(jīng)常用到,如下是一個案例,請補(bǔ)充完整。
原題:如圖1,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°,AB=3,CD=4,則BD= 。
⑴嘗試探究:如圖2,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,點(diǎn)E在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,則CD= (試寫出解答過程)。
⑵類比延伸:利用圖3,再探究,當(dāng)A、C兩點(diǎn)分別在直徑MN兩側(cè),且AB≠CD,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°時,則線段AB、CD、BD滿足的數(shù)量關(guān)系為 。
⑶拓展遷移:如圖4,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(m,6),B(n,1)兩點(diǎn)(其中0<m<3),且以y軸為對稱軸,且∠AOB=90°,①求mn的值;②求拋物線的解析式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com