先觀察下列等式:數(shù)學(xué)公式數(shù)學(xué)公式,數(shù)學(xué)公式
則計(jì)算數(shù)學(xué)公式=________.


分析:先由已知等式得出規(guī)律:=-,然后根據(jù)這個(gè)規(guī)律作答.
解答:
=1-+-+…+-
=1-
=
點(diǎn)評(píng):能夠通過(guò)觀察得出規(guī)律:=-是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 
;
(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
17
35
,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4

則計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.
1
1×2
=1-
1
2
,=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4

(1)計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
 
.(用含有n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)先觀察下列等式,再填空:
32-12=8×1,52-32=8-2.
(1)72-52=8×
3
3
;
(2)92-(
7
7
2=8×4;
(3)(
11
11
2-92=8×5;
(4)132-(
11
11
2=8×
6
6
;
(5)通過(guò)觀察歸納,寫出用含自然數(shù)n的等式表示這種規(guī)律,并加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)先閱讀下列一組內(nèi)容,然后解答問(wèn)題:
先觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

將以上等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題:
(1)猜想并寫出:
1
n(n-1)
=
1
n-1
-
1
n
1
n-1
-
1
n

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=
2010
2011
2010
2011
;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
;
(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

同步練習(xí)冊(cè)答案