分析 (1)由旋轉(zhuǎn)的性質(zhì)可知CO=CD,∠OCD=60°,可判斷:△COD是等邊三角形;
(2)由(1)可知∠COD=60°,當α=150°時,∠ADO=∠ADC-∠CDO,可判斷△AOD為直角三角形;
(3)根據(jù)等腰三角形的性質(zhì),分別假設(shè)AO=AD,OA=OD,OD=AD,從而求出α.
解答 (1)證明:∵將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,
∴∠OCD=60°,CO=CD,
∴△OCD是等邊三角形;
(2)解:△AOD為直角三角形.
理由:∵△COD是等邊三角形.
∴∠ODC=60°,
∵將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,
∴∠ADC=∠BOC=α,
∴∠ADC=∠BOC=150°,
∴∠ADO=∠ADC-∠CDO=150°-60°=90°,于是△AOD是直角三角形.
(3)解:①要使AO=AD,需∠AOD=∠ADO.
∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠AOD=190°-α,∠ADO=α-60°,
∴∠OAD=180°-(∠AOD+∠ADO)=50°,
∴α-60°=50°
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD.
∵190°-α=50°
∴α=140°.
綜上所述:當α的度數(shù)為125°,或110°,或140°時,△AOD是等腰三角形.
點評 此題主要考查了等邊三角形的性質(zhì)與判定,以及等腰三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)等知識,根據(jù)旋轉(zhuǎn)前后圖形不變是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 50° | C. | 40° | D. | 70° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com