【題目】如圖,在中,.以為直徑的⊙相切于,交于點,的延長線交⊙于點,過點作弦,垂足為點

(1)求證:①,②

(2)若,求的長.

【答案】)①證明見解析;②證明見解析;()4 .

【解析】(1) ①由切線的性質和垂徑定理即可得證;(2)連接BD,由直徑所對的圓周角為90°和等腰三角形的性質以及已知條件證明結論即可;(2)AB=2,則圓的直徑為2,所以半徑為1,即OB=OE=1,利用勾股定理求出CO的長,再通過證明△EOG∽△COB得到關于EG的比例式可求出EG的長,進而求出EF的長.

本題解析:

)①∵為切線,切點為,為直徑,∴,

,∴

②連接

為直徑,點在⊙上,∴,∴,

,∴,,∴,

,∴,∴,∴,

,∴

)∵,

,∴,

∵在中,,,

,,

,,

∴()①∵為切線,切點為,為直徑,∴,

,∴

②連接

為直徑,點在⊙上,∴,∴

,∴,∴,

,∴,∴,∴

,∴

)∵,

,,

,

∵在中,,,

,

,

,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a2×a3=a6
B.a2+a2=2a4
C.a8÷a4=a4
D.(a23=a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列能判定兩個三角形全等的是( 。

①三條邊對應相等;②三個角對應相等;③兩邊和一個角對應相等;④兩角和它們的夾邊對應相等;⑤兩角和一個角的對邊對應相等.

A. ①②③ B. ①③⑤ C. ②③④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4) , 動點P從點A出發(fā),沿y
軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為 t 秒.(直線y = kx+b平移時k不變)

(1)當t=3時,求 l 的解析式;
(2)若點M,N位于l 的異側,確定 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點PPQ⊥BDBC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0t).

1)如圖1,連接DQ平分∠BDC時,t的值為

2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;

3)請你繼續(xù)進行探究,并解答下列問題:

證明:在運動過程中,點O始終在QM所在直線的左側;

如圖3,在運動過程中,當QM⊙O相切時,求t的值;并判斷此時PM⊙O是否也相切?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形的三條高線交點恰好是此三角形的一個頂點,則此三角形是______三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[探究函數(shù)的圖象與性質]

(1)函數(shù)的自變量的取值范圍是 ;

(2)下列四個函數(shù)圖象中函數(shù)的圖象大致是 ;

(3)對于函數(shù),求當時, 的取值范圍.

請將下列的求解過程補充完整.

解:∵

.

[拓展運用]

(4)若函數(shù),則的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|﹣9|的平方根等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:(1)(5a-3b-3a-2b);(23x2-[7x-4x-3-2x2]

查看答案和解析>>

同步練習冊答案