如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形AOCB是梯形,AB∥OC,點(diǎn)A在y軸上,點(diǎn)C在x軸上,且,OB=OC.
(1)求點(diǎn)B的坐標(biāo);
(2)點(diǎn)P從C點(diǎn)出發(fā),沿線段CO以5個(gè)單位/秒的速度向終點(diǎn)O勻速運(yùn)動(dòng),過點(diǎn)P作PH⊥OB,垂足為H,設(shè)△HBP的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過點(diǎn)P作PM∥CB交線段AB于點(diǎn)M,過點(diǎn)M作MR⊥OC,垂足為R,線段MR分別交直線PH、OB于點(diǎn)E、G,點(diǎn)F為線段PM的中點(diǎn),連接EF.
①判斷EF與PM的位置關(guān)系;
②當(dāng)t為何值時(shí),EG=2?

【答案】分析:(1)根據(jù)已知得出OB=OC=10,BN=OA=8,即可得出B點(diǎn)的坐標(biāo);
(2)利用△BON∽△POH,得出對(duì)應(yīng)線段成比例,即可得出S與t之間的函數(shù)關(guān)系式;
(3)①利用∠RPM+∠RMP=90°,∠HPD+∠HDP=90°,得出∠EMP=∠HPM,三角形三線合一得出;
②利用△MGB∽△N′BO,分別進(jìn)行討論得出當(dāng)點(diǎn)G在點(diǎn)E上方時(shí),以及當(dāng)點(diǎn)G在點(diǎn)E下方時(shí)得出t的值即可.
解答:解:(1)如圖1,過點(diǎn)B作BN⊥OC,垂足為N
,OB=OC,
∴OA=8,OC=10(1分)
∴OB=OC=10,BN=OA=8,

∴B(6,8)(2分)

(2)如圖1,∵∠BON=∠POH,∠ONB=∠OHP=90°.
∴△BON∽△POH,

∵PC=5t.∴OP=10-5t.
∵BO=10,PO=10-5t,ON=6,
=,
∴OH=6-3t,
同理可得,PH=8-4t.
∴BH=OB-OH=10-(6-3t)=3t+4,
∴S=(3t+4)(8-4t)=-6t2+4t+16(3分),
∴t的取值范圍是:0≤t<2(4分)

(3)①EF⊥PM(5分)
∵M(jìn)R⊥OC,PH⊥OB,
∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90°
∵OC=OB,
∴∠OCB=∠OBC.
∵BC∥PM,
∴∠RPM=∠HDP,
∴∠RMP=∠HPD,即:∠EMP=∠HPM,
∴EM=EP
∵點(diǎn)F為PM的中點(diǎn),
∴EF⊥PM(6分);
②如圖2,過點(diǎn)B作BN′⊥OC,垂足為N′,BN′=8,CN′=4
∵BC∥PM,MR⊥OC,
∴△MRP≌△BN′C,
∴PR=CN′=4
設(shè)EM=x,則EP=x,在△PER中,∠ERP=90°,RE=MR-ME=8-x
有x2-(8-x)2=42,
∴x=5,
∴ME=5
∵△MGB∽△N′BO,

∵PM∥CB,AB∥OC,
∴四邊形BMPC是平行四邊形.
∴BM=PC=5t.
第一種情況:當(dāng)點(diǎn)G在點(diǎn)E上方時(shí)(如圖2)
∵EG=2,
∴MG=EM-EG=5-2=3,
,
∴t=(7分);

第二種情況:當(dāng)點(diǎn)G在點(diǎn)E下方時(shí)(如圖3)MG=ME+EG=5+2=7,
,
∴t=(8分)
∴當(dāng)t=時(shí),EG=2.
點(diǎn)評(píng):此題主要考查了相似三角形的性質(zhì)與判定以及勾股定理的應(yīng)用和直角梯形的性質(zhì)等知識(shí),利用△MGB∽△N′BO,分別進(jìn)行討論是難點(diǎn)問題,也容易漏解,應(yīng)引起同學(xué)們的注意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案