【題目】如圖,△ABC中,∠C=90°,⊙I為△ABC的內(nèi)切圓,點(diǎn)O為△ABC的外心,BC=6,AC=8.

(1)求⊙I的半徑;

(2)求線段OI的長.

【答案】(1)2;(2).

【解析】

(1)首先設(shè)⊙I的半徑為r,由ABC中,∠C=90゜,BC=6,AC=8,可求得AB的長,又由SABC=ACBC=(AB+AC+BC)·r,即可求得答案;
(2)首先設(shè)⊙IABC的三邊分別切于點(diǎn)D,E,F(xiàn),連接ID,IE,IF,由切線長定理可求得BD的長,又由點(diǎn)OABC的外心,可求得OB的長,即可求得OD的長,然后由勾股定理求得答案.

(1)設(shè)⊙I半徑為r,

∵△ABC中,∠C=90゜,BC=6,AC=8,

AB==10,

SABC=ACBC=(AB+AC+BC)r,

r==2;

(2)設(shè)⊙IABC的三邊分別切于點(diǎn)D,E,F(xiàn),連接ID,IE,IF,

∴∠IEC=IFC=90°,

∵∠C=90°,

∴四邊形IECF是矩形,

IE=IF,

∴四邊形IECF是正方形,

CE=IE=2,

BD=BE=BC﹣CE=6﹣2=4,

∵點(diǎn)OABC的外心,

AB是直徑,

OB=AB=5,

OD=OB﹣BD=5﹣4=1,

OI=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,軸,軸,點(diǎn)x軸上,A1,2),B-12),D-3,0),E-3,-2),G3,-2)把一條長為2018個(gè)單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-D-E-F-G-H-P-A…的規(guī)律緊繞在圖形“凸”的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是(

A.1,1B.12

C.1,2D.1,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限且OC=5,點(diǎn)Bx軸的正半軸上且OB=6,OAB=90°OA=AB.

(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過點(diǎn)P的直線ly軸平行,直線l交邊OA成邊AB于點(diǎn)Q,交邊OC或邊CB于點(diǎn)R,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長度為m,已知t=4時(shí),直線l恰好過點(diǎn)C,當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ACBD,EA,EB分別平分CAB和DBA,CD過E點(diǎn).求證:AB=AC+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:

如圖,ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,將ABC向下平移2倍,再向右平移3格.

1)請?jiān)趫D中畫出平移后的A′B′C′;

2)在圖中畫出A′B′C′的高C′D′(標(biāo)出點(diǎn)D′的位置);

3)如果每個(gè)小正方形邊長為1,則A′B′C′的面積=   .(答案直接填在題中橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫圖:

(1)畫一條線段MN,使MN=;
(2)畫△ABC,三邊長分別為3,,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DGBC,ACBC,EFAB,∠1=2,求證:CDAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=kx2+(2k-1)x-1x軸交點(diǎn)的橫坐標(biāo)為x1,x2(x1<x2),則對于下列結(jié)論:(1) 當(dāng)x= -2時(shí),y=1;(2) 當(dāng)x> x2時(shí),y>0;(3)方程kx2+(2k-1)x-1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正確的結(jié)論有_______(只需填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,ADBC,垂足為D.給出下列四個(gè)結(jié)論:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正確的結(jié)論有_____.

查看答案和解析>>

同步練習(xí)冊答案