【題目】綜合與探究:在平面直角坐標(biāo)系中,已知拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),它的對(duì)稱軸與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn),連接

1)求,兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;

2)探索直線上是否存在點(diǎn),使為直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;

3)若點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),試探究在拋物線上是否存在點(diǎn)

①使以點(diǎn),,,為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由;

②使以點(diǎn),,,為頂點(diǎn)的四邊形為矩形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】1)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;(2)存在,點(diǎn)的坐標(biāo)為;(3)①拋物線上存在點(diǎn),使以點(diǎn)為頂點(diǎn)的四邊形為菱形,此時(shí)點(diǎn)的坐標(biāo)為;②拋物線上存在點(diǎn),使以點(diǎn)為頂點(diǎn)的四邊形為矩形,此時(shí)點(diǎn)的坐標(biāo)為

【解析】

1)先由拋物線的解析式以及圖像特征求得點(diǎn)、的坐標(biāo),再利用待定系數(shù)法即可求得直線的函數(shù)表達(dá)式;

(2)先由點(diǎn)、 三點(diǎn)的坐標(biāo)根據(jù)坐標(biāo)系中距離公式推出為等邊三角形,再分兩種情況畫圖進(jìn)行分類討論,利用解直角三角形確定符合要求的點(diǎn)的坐標(biāo).

(3)①通過添加輔助線構(gòu)造出四邊形,然后根據(jù)菱形的判定方法進(jìn)行證明即可;

②通過添加輔助線構(gòu)造出四邊形,然后根據(jù)矩形的判定方法進(jìn)行證明即可.

解:(1)當(dāng)時(shí),

解得,

∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

∴拋物線的對(duì)稱軸為直線

∴點(diǎn)的坐標(biāo)為

當(dāng)時(shí),

∴點(diǎn)的坐標(biāo)為

設(shè)直線的表達(dá)式為,則

解得

∴直線的表達(dá)式為

2)結(jié)論:直線上存在點(diǎn),使為直角三角形.

證明:∵點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

又∵點(diǎn)的坐標(biāo)為,

為等邊三角形

分兩種情況:

①當(dāng)時(shí),

軸于點(diǎn),如圖:

∵在中,

,

∴點(diǎn)的坐標(biāo)為

②作軸于點(diǎn),如圖:

當(dāng)時(shí)

,

中,

,

∴點(diǎn)的坐標(biāo)為

∴綜上所述:直線上存在點(diǎn),使為直角三角形,點(diǎn)的坐標(biāo)為;

(3)①過點(diǎn)軸交拋物線于點(diǎn),連接,如圖:

∵點(diǎn)的坐標(biāo)為,

∴當(dāng)時(shí),

(不合題意舍去)

∴點(diǎn)的坐標(biāo)為

∵點(diǎn)的坐標(biāo)為

∵由(2)可知

∴四邊形是菱形

∴當(dāng)點(diǎn)位于點(diǎn)處時(shí),拋物線上存在點(diǎn),使以點(diǎn)、為頂點(diǎn)的四邊形為菱形,此時(shí)點(diǎn)的坐標(biāo)為;

②過點(diǎn)交直線于點(diǎn),連接、,如圖:

∵由(2)可知

∵由(2)可知

∵點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

,

∴四邊形是矩形

∴拋物線上存在點(diǎn)即點(diǎn)處,使以點(diǎn)、、、為頂點(diǎn)的四邊形為矩形,此時(shí)點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCABAD,對(duì)角線AC,BD交于點(diǎn)OAC平分∠BAD,過點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E,連接OE

1)求證:四邊形ABCD是菱形;

2)若AB,BD2,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年植樹節(jié)這一天,某校組織300名七年級(jí)學(xué)生,200名八年級(jí)學(xué)生,100名九年級(jí)學(xué)生參加義務(wù)植樹活動(dòng).圖甲是根據(jù)植樹情況繪制成的條形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)題中提供的信息解答下列問題.

(1)參加植樹的學(xué)生平均每人植樹多少棵?

(2)2是小明同學(xué)尚未完成的各年級(jí)植樹情況的扇形統(tǒng)計(jì)圖,請(qǐng)你把它補(bǔ)充完整(要求標(biāo)注圓心角度數(shù))

(3)若該種樹苗在正常情況下的成活率為85%,則今后還需補(bǔ)種多少棵樹?(補(bǔ)種樹苗的成活率也為85%)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD與線段AE,且AEAB重合.現(xiàn)將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在旋轉(zhuǎn)過程中,若不考慮點(diǎn)E與點(diǎn)B重合的情形,點(diǎn)E還有三次落在菱形ABCD的邊上,設(shè)∠B=α,則下列結(jié)論正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:

第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).

(1)A(2,3)q=2,直接寫出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);

(2)已知直線ly=kx-2,拋物線Cy=-x2+mx-2(m0).點(diǎn)N(,2k-2)在直線l上.

①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說明理由;

②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

1)求點(diǎn),的坐標(biāo);

2)求直線的解析式;

3)在直線下方的拋物線上是否存在一點(diǎn),使的面積最大?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展“書香校園”活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)位為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如下不完整的統(tǒng)計(jì)圖表.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1=___________,=_____________;

2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是_________,眾數(shù)是__________;

3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.了解全國(guó)中學(xué)生最喜愛哪位歌手,適合全面調(diào)查.

B.甲乙兩種麥種,連續(xù)3年的平均畝產(chǎn)量相同,它們的方差為:S25,S20.5,則甲麥種產(chǎn)量比較穩(wěn).

C.某次朗讀比賽中預(yù)設(shè)半數(shù)晉級(jí),某同學(xué)想知道自己是否晉級(jí),除知道自己的成績(jī)外,還需要知道平均成績(jī).

D.一組數(shù)據(jù):3,25,54,6的眾數(shù)是5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】立定跳遠(yuǎn)是體育中考選考項(xiàng)目之一,體育課上老師記錄了某同學(xué)的一組立定跳遠(yuǎn)成績(jī)?nèi)绫恚?/span>

成績(jī)(m

2.3

2.4

2.5

2.4

2.4

則下列關(guān)于這組數(shù)據(jù)的說法,正確的是(  )

A.眾數(shù)是2.3B.平均數(shù)是2.4

C.中位數(shù)是2.5D.方差是0.01

查看答案和解析>>

同步練習(xí)冊(cè)答案