【題目】早晨,小剛沿著通往學校唯一的一條路(直路)上學,途中發(fā)現(xiàn)忘帶飯盒,停下來往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學校,同時小剛返回,兩人相遇后,小剛立即趕往學校,媽媽回家,15分鐘后媽媽到家,再經(jīng)過3分鐘小剛到達學校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數(shù)關(guān)系如圖,下列四種說法中錯誤的是( )

A. 打電話時,小剛和媽媽的距離為1250米

B. 打完電話后,經(jīng)過23分鐘小剛到達學校

C. 小剛和媽媽相遇后,媽媽回家的速度為150米/分

D. 小剛家與學校的距離為2550米

【答案】C

【解析】(1)由圖中信息可知,小剛打電話時,他和他媽媽的距離為1250米,故A中說法正確;

(2)由圖中信息可知,小剛是在打完電話23分鐘時趕到學校的,故B中說法正確;

(3)由圖中信息可知,小剛打完電話后5分鐘和媽媽相遇,則由圖中信息可知,相遇地距他家:1250-100×5=750(米),由小剛媽媽返回家用了15分鐘可得他媽媽返回的速度為:750÷15=50(米/分鐘),故C中說法錯誤;

(4)由圖中信息可得,小剛家到學校的距離為:2250+100×(23-20)=2550(米),故D中說法正確;

綜上所述:ABD中說法都是正確的,錯誤的是C.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠一周計劃每日生產(chǎn)自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):

星期

增減(輛)

1

+3

2

4

+7

5

10

1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情填,

在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數(shù)學活動,如圖1,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD、并且量得AB2cmAC4cm.

操作發(fā)現(xiàn):

(1)將圖1中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過點CAC′的平行線,與DC′的延長線交于點E,則四邊形ACEC'的形狀是_________

(2)創(chuàng)新小組將圖1中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使B,AD三點在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點F,連精AF并延長到點G,使FGAF,連接CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.

實踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將△ABC沿著BD方向平移,使點B與點A重合,此時A點平移至A′點,A′CBC′相交于點H.如圖4所示,連接CC',試求CH的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,AECF

(1)求證:BOE≌△DOF

(2)若BDEF,連接DEBF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖ABDC,AF平分∠BAEDF平分∠CDE,且∠AFD比∠AED2倍小10°,則∠AED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C'處,若∠ADB=46°,則∠DBE的度數(shù)為______.

(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9

(畫一畫)

如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(MN分別在邊AD,BC),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);

(算一算)

如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點AB分別落在點A',B'處,若AG=,求B'D的長;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A. C分別在x、y軸的正半軸上,DBC邊上的點,反比例函數(shù)y= (k0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)AB邊上的點E(3,).

(1)求反比例函數(shù)的表達式和m的值;

(2)將矩形OABC的進行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,AEBC于點E,延長BC至點F,點使,連接AF、DEDF。

1)求證:四邊形AEFD是矩形;

2)若,,,求AE的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ABAC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)一個角度αα≤90°),分別交線段BC,AD于點E,F,連接BF

1)如圖1,在旋轉(zhuǎn)的過程中,求證:OEOF;

2)如圖2,當旋轉(zhuǎn)至90°時,判斷四邊形ABEF的形狀,并證明你的結(jié)論;

3)若AB1,BC,且BFDF,求旋轉(zhuǎn)角度α的大。

查看答案和解析>>

同步練習冊答案