如圖,△ABC內(nèi)接于半圓,AB為直徑,設(shè)D是弧AC的中點(diǎn),連接BD交AC于G,過(guò)D作DE⊥AB于E,交AC于F.
求證:FD=FG.
見(jiàn)解析
【解析】
試題分析:由D是弧AC的中點(diǎn)可得弧AD=弧DC,即得∠ABD=∠DBC,根據(jù)AB為直徑再結(jié)合DE⊥AB可得∠EDG=∠DGF,即可證得結(jié)論.
∵D是弧AC的中點(diǎn),
∴弧AD=弧DC,
∴∠ABD=∠DBC
∵AB為直徑
∴∠ACB=90°
∴∠CGB=90°-∠CBA,
∵∠DGF=∠CGB(對(duì)頂角相等),
∴∠DGF=90°-∠CBD,
∵DE⊥AB,
∴∠GDF=90°-∠DBE,
∴∠EDG=∠DGF,
∴△FDG是等腰△,
∴FD=FG.
考點(diǎn):本題考查的是圓周角定理
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握?qǐng)A周角定理的推論:直徑所對(duì)的圓周角是直角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com