如圖,在Rt△ABC中,∠ACB=900,點(diǎn)D是邊AB上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長DE交BC的延長線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=1,cosB=,求⊙O的半徑.
解:(1)證明:如圖,連接OE,
∵AC與⊙O相切于點(diǎn)E, ∴OE⊥AC,即∠OEC=900.
∵∠ACB=900,∴∠OEC=∠ACB!郞E∥BC。
∴∠OED=∠F。
∵OE=OD,∴∠OED=∠ODE。∴∠F=∠ODE。
∴BD=BF。
(2)∵cosB=,∴設(shè)BC=3x,AB=5x。
∵CF=1,∴。
由(1)知,BD=BF,∴。∴。∴,。
∵OE∥BF,∴∠AOE=∠B!,即,解得,。
∴⊙O的半徑為。
【解析】
試題分析:(1)由平行線的性質(zhì)、等腰三角形的性質(zhì)推知∠OED=∠F,則易證得結(jié)論。
(2)由cosB=,設(shè)BC=3x,AB=5x,根據(jù)OE∥BF,得∠AOE=∠B,從而。因此列出關(guān)于半徑r的方程,通過解方程即可求得r的值,進(jìn)而得到⊙O的半徑。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com