如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(數(shù)學(xué)公式,0)、(0,4),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的縱坐標(biāo)為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:由P點(diǎn)在第一象限,∠AOP=45°,可設(shè)P(a,a).過點(diǎn)C作CF∥OA,過點(diǎn)P作PE⊥OA于E交CF于F,用含a的代數(shù)式分別表示PF,CF,在△CFP中由勾股定理求出a的值,即可求得P點(diǎn)的坐標(biāo).
解答:解:∵OB=4,OA=4,
∴AB==8,
∵∠AOP=45°,
P點(diǎn)橫縱坐標(biāo)相等,可設(shè)P(a,a).
∵∠AOB=90°,
∴AB是直徑,
∴Rt△AOB外接圓的圓心為AB中點(diǎn),設(shè)為點(diǎn)C,則C(2,2),
P點(diǎn)在圓上,P點(diǎn)到圓心的距離為圓的半徑4.
過點(diǎn)C作CF∥OA,過點(diǎn)P作PE⊥OA于E交CF于F,
∴∠CFP=90°,
∴PF=a-2,CF=a-2,PC=4,
+(a-2)2=42,舍去不合適的根,
可得a=2+2,P(2+2,2+2);
即P點(diǎn)坐標(biāo)為(2+2,2+2).
故選:D.
點(diǎn)評:此題主要考查了圓周角定理、勾股定理、等腰直角三角形的判定和性質(zhì)等知識的綜合應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A、C兩點(diǎn)在雙曲線y=
1x
上,點(diǎn)C的橫坐標(biāo)比點(diǎn)A的橫坐標(biāo)多2,AB⊥x軸,CD⊥x軸,CE⊥AB,垂足分別是B、D、E.
(1)當(dāng)A的橫坐標(biāo)是1時,求△AEC的面積S1
(2)當(dāng)A的橫坐標(biāo)是n時,求△AEC的面積Sn;
(3)當(dāng)A的橫坐標(biāo)分別是1,2,…,10時,△AEC的面積相應(yīng)的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•福田區(qū)二模)如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個動點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是
11
3
11
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2
3
,0)、(0,2),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M、N兩點(diǎn)在正方形ABCD的對角線BD上移動,∠MCN為定角,連接AM、AN,并延長分別交BC、CD于E、F兩點(diǎn),則∠CME與∠CNF在M、N兩點(diǎn)移動過程,它們的和是否有變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知E、F兩點(diǎn)在線段BC上,AB=AC,BF=CE,你能判斷線段AF和AE的大小關(guān)系嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊答案