【題目】某市今年中考理化實驗操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學(xué)試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學(xué)實驗F的概率.

【答案】小剛抽到物理實驗B和化學(xué)實驗F的概率為

【解析】試題分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率即可.

試題解析:

化學(xué)實驗物理實驗

D

E

F

A

(A,D)

(A,E)

(A,F(xiàn))

B

(B,D)

(B,E)

(B,F(xiàn))

C

(C,D)

(C,E)

(C,F(xiàn))

從表格可以看出,所有可能出現(xiàn)的結(jié)果共有9種,其中抽到物理實驗B和化學(xué)實驗F出現(xiàn)了一次,所以小剛抽到物理實驗B和化學(xué)實驗F的概率=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)設(shè)拋物線的對稱軸與x軸交于點(diǎn)M,問在對稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)如圖②,若點(diǎn)E為第二象限拋物線上一動點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與計算:

在△ABC中,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,連接DE.

(1)如圖1,若∠A=45°,AB=AC,BC=4,求DE的長.

(2)如圖2,若∠A=60°,AB與AC不相等,BC=4,求DE的長.

猜想與證明:

(3)根據(jù)(1)(2)所求出的結(jié)果,猜想DE、BC以及∠A之間的數(shù)量關(guān)系,并證明.

拓展與應(yīng)用:

(4)如圖3,在△ABC中,AB=BC=5,AC=2,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,AF⊥BC于點(diǎn)F,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(
A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)李老師給學(xué)生出了這樣一個問題:探究函數(shù)y=圖象與性質(zhì).小斌根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究.下面是小斌的探究過程,請補(bǔ)充完成:

(1)函數(shù)y=的自變量x的取值范圍是   ;

(2)根據(jù)下表所列出y與x對應(yīng)值,在平面直角坐標(biāo)系中描出各對以對應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象;

(3)若直線y=x+b與函數(shù)y=的圖象無交點(diǎn),請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.7a+a=7a2
B.a2a3=a6
C.a3÷a=a2
D.(ab)2=ab2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.

(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB以O(shè)為圓心,以任意長為半徑作弧,分別交OA、OB于F、E兩點(diǎn),再分別以E、F為圓心,大于 EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線OP,過點(diǎn)F作FD∥OB交OP于點(diǎn)D.

(1)若∠OFD=116°,求∠DOB的度數(shù);
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2×1022×(3×10﹣2)=(結(jié)果用科學(xué)記數(shù)法表示).

查看答案和解析>>

同步練習(xí)冊答案