【題目】我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即|x|=|x﹣0|,也就是說(shuō)|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;這個(gè)結(jié)論可以推廣為:|x﹣y|表示在數(shù)軸上數(shù)x、y對(duì)應(yīng)點(diǎn)之間的距離;在解題中,我們常常運(yùn)用絕對(duì)值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的解為x=±2.
②在方程|x﹣1|=2中,x的值就是數(shù)軸上到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù),顯然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和﹣2的距離之和為5 的點(diǎn)對(duì)應(yīng)的x值,在數(shù)軸上1和﹣2的距離為3,滿(mǎn)足方程的x的對(duì)應(yīng)點(diǎn)在1的右邊或﹣2的左邊.若x的對(duì)應(yīng)點(diǎn)在1的右邊,由圖示可知,x=2;同理,若x的對(duì)應(yīng)點(diǎn)在﹣2的左邊,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根據(jù)上面的閱讀材料,解答下列問(wèn)題:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)畫(huà)出圖示,解方程|x﹣3|+|x+2|=9.
【答案】(1)x=5或-5 ;(2)x=5或-1;(3)x=5或-4.
【解析】試題分析:
(1)由于|x|=5表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離,所以x=±5;
(2)由于|x-2|=3中,x的值就是數(shù)軸上到2的距離為3的點(diǎn)對(duì)應(yīng)的數(shù),顯然x=5或-1;
(3)方程|x-3|+|x+2|=9表示數(shù)軸上與3和-2的距離之和為9的點(diǎn)對(duì)應(yīng)的x值,在數(shù)軸上3和-2的距離為5,滿(mǎn)足方程的x的對(duì)應(yīng)點(diǎn)在3的右邊或-2的左邊,畫(huà)圖即可解答.
試題解析:(1)∵在數(shù)軸上與原點(diǎn)距離為5的點(diǎn)對(duì)應(yīng)的數(shù)為±5,
∴方程|x|=5的解為x=±5;
(2)∵在方程|x-2|=3中,x的值是數(shù)軸上到2的距離為3的點(diǎn)對(duì)應(yīng)的數(shù),
∴方程|x-2|=3的解是x=5或-1;
(3)∵在數(shù)軸上3和-2的距離為5,5<9,
∴滿(mǎn)足方程|x-3|+|x+2|=9的x的對(duì)應(yīng)點(diǎn)在3的右邊或-2的左邊.
若x的對(duì)應(yīng)點(diǎn)在3的右邊,由圖示可知,x=5;
若x的對(duì)應(yīng)點(diǎn)在-2的左邊,由圖示可知,x=-4,
所以原方程的解是x=5或x=-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(3,4),點(diǎn)B(﹣1,1),在x軸上有兩動(dòng)點(diǎn)E、F,且EF=1,線(xiàn)段EF在x軸上平移,當(dāng)四邊形ABEF的周長(zhǎng)取得最小值時(shí),點(diǎn)E的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中, ,, 的平分線(xiàn)與的垂直平分線(xiàn)交于點(diǎn),將沿 (在上, 在上)折疊,點(diǎn)與點(diǎn)恰好重合,則的度數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了開(kāi)展陽(yáng)光體育運(yùn)動(dòng),讓學(xué)生每天能鍛煉一小時(shí),某學(xué)校去體育用品商店購(gòu)買(mǎi)籃球與足球,籃球每只定價(jià)100元,足球每只定價(jià)50元.體育用品商店向?qū)W校提供兩種優(yōu)惠方案:①買(mǎi)一只籃球送一只足球;②籃球和足球都按定價(jià)的80%付款.現(xiàn)學(xué)校要到該體育用品商店購(gòu)買(mǎi)籃球30只,足球x只(x>30).
(1)若該學(xué)校按方案①購(gòu)買(mǎi),籃球需付款 元,足球需付款 元(用含x的式子表示);
若該學(xué)校按方案②購(gòu)買(mǎi),籃球需付款 元,足球需付款 元(用含x的式子表示);
(2)若x=40,請(qǐng)通過(guò)計(jì)算說(shuō)明按方案①、方案②哪種方案購(gòu)買(mǎi)較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知C為線(xiàn)段AB的中點(diǎn),E為線(xiàn)段AB上的點(diǎn),點(diǎn)D為線(xiàn)段AE的中點(diǎn).
(1)若線(xiàn)段AB=a,CE=b,|a﹣15|+(b﹣4.5)2=0,求a,b的值;
(2)如圖1,在(1)的條件下,求線(xiàn)段DE的長(zhǎng);
(3)如圖2,若AB=15,AD=2BE,求線(xiàn)段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東臺(tái)教育局為幫助全市貧困師生舉行“一日捐”活動(dòng),甲、乙兩校教師各捐款30000元,已知“……”,設(shè)乙學(xué)校教師有x人,則可得方程,根據(jù)此情景,題中用“……”表示的缺失的條件應(yīng)補(bǔ)( )
A. 乙校教師比甲校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
B. 甲校教師比乙校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
C. 甲校教師比乙校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
D. 乙校教師比甲校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司保安部去商店購(gòu)買(mǎi)同一品牌的應(yīng)急燈和手電筒,查看定價(jià)后發(fā)現(xiàn),購(gòu)買(mǎi)一個(gè)應(yīng)急燈和5個(gè)手電筒共需50元,購(gòu)買(mǎi)3個(gè)應(yīng)急燈和2個(gè)手電筒共需85元.
(1)求出該品牌應(yīng)急燈、手電筒的定價(jià)分別是多少元?
(2)經(jīng)商談,商店給予該公司購(gòu)買(mǎi)一個(gè)該品牌應(yīng)急燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個(gè)數(shù)是應(yīng)急燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買(mǎi)應(yīng)急燈和手電筒的總費(fèi)用不超過(guò)670元,那么該公司最多可購(gòu)買(mǎi)多少個(gè)該品牌應(yīng)急燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,M為AB的中點(diǎn).D是射線(xiàn)BC上一個(gè)動(dòng)點(diǎn),連接AD,將線(xiàn)段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段AE,連接ED,N為ED的中點(diǎn),連接AN,MN.
(1)如圖1,當(dāng)BD=2時(shí),AN等于多少?,NM與AB的位置關(guān)系是?
(2)當(dāng)4<BD<8時(shí),
①依題意補(bǔ)全圖2;
②判斷(1)中NM與AB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論;
(3)連接ME,在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,當(dāng)BD的長(zhǎng)為何值時(shí),ME的長(zhǎng)最。孔钚≈凳嵌嗌?請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com