如圖,在平面直角坐標(biāo)系中,開口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應(yīng)的二次函數(shù)解析式;
(2)過點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.
(1)解方程x2-4x+3=0得:
x=1或x=3,而OA<OB,
則點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0);(1分)
∵A、B關(guān)于拋物線對稱軸對稱,
∴△DAB是等腰三角形,而∠DAB=45°,
∴△DAB是等腰直角三角形,得D(1,-2);
令拋物線對應(yīng)的二次函數(shù)解析式為y=a(x-1)2-2,
∵拋物線過點(diǎn)A(-1,0),
∴0=4a-2,得a=
1
2
,
故拋物線對應(yīng)的二次函數(shù)解析式為y=
1
2
(x-1)2-2(或?qū)懗蓎=
1
2
x2-x-
3
2
);(4分)

(2)∵CA⊥AD,∠DAC=90°,(5分)
又∵∠DAB=45°,
∴∠CAB=45°;
令點(diǎn)C的坐標(biāo)為(m,n),則有m+1=n,(6分)
∵點(diǎn)C在拋物線上,
∴n=
1
2
(m-1)2-2;(7分)
化簡得m2-4m-5=0
解得m=5,m=-1(舍去),
故點(diǎn)C的坐標(biāo)為(5,6);(8分)

(3)由(2)知AC=6
2
,而AD=2
2
,
∴DC=
AD2+AC2
=4
5

過A作AM⊥CD,
又∵
1
2
AC×AD=
1
2
DC×AM
,
∴AM=
24
4
5
=
6
5
5
,(9分)
又∵S△ADC=S△APD+S△APC
1
2
×AC×AD=
1
2
AP×d1+
1
2
AP×d2
,(11分)
d1+d2=
24
AP
24
AM
=24×
5
6
5
=4
5
;
即此時(shí)d1+d2的最大值為4
5
.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+4ax+t與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B.
(1)求點(diǎn)B的坐標(biāo);
(2)D是拋物線與y軸的交點(diǎn),C是拋物線上的一點(diǎn),且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)已知直線y=k與拋物線不相交,且拋物線上任意一點(diǎn)到這條直線的距離與這一點(diǎn)到點(diǎn)F(-2,-
3
4
a
)的距離相等,則k的值為______.(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=a(x+1)2+m的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C,頂點(diǎn)為M,直線MC的解析式為y=kx-3,且直線MC與x軸交于點(diǎn)N,sin∠BCO=
10
10

(1)求直線MC及二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P(異于點(diǎn)C),使以點(diǎn)P、N、C為頂點(diǎn)的三角形是以NC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在坐標(biāo)軸上是否存在這樣的點(diǎn)F,使得∠DFB=∠DCB?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在平面直角坐標(biāo)系中二次函數(shù)y=-x2+bx+c的圖象經(jīng)過點(diǎn)A(1,-2),B(3,-1)
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)請問在y軸上是否存在點(diǎn)P,使得S△ABC=S△ABP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)請?jiān)趫D(2)上用尺規(guī)作圖的方式探究拋物線上是否存在點(diǎn)Q,使得△QAB是等腰三角形?若存在,請判斷點(diǎn)Q共有幾個(gè)可能的位置(保留作圖痕跡);若不存在,請說明理由(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個(gè)動點(diǎn),過點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

暑假期間,北關(guān)中學(xué)對網(wǎng)球場進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線對稱軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
(1)請求出拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從10米的窗口A用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在平面與墻面垂直),如果拋物線的最高點(diǎn)M距離1米,離地面
40
3
米,試求水流落在點(diǎn)B距墻的距離OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請?zhí)骄浚航?jīng)過點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案