如圖,矩形A1B1C1D1的面積為4,順次連結(jié)各邊中點(diǎn)得到四邊形A2B2C2D2,再順次連結(jié)四邊形A2B2C2D2四邊中點(diǎn)得到四邊形A3B3C3D3,依此類(lèi)推,求四邊形AnBnCnDn的面積是 .
【解析】:∵四邊形A1B1C1D1是矩形,
∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;
又∵各邊中點(diǎn)是A2、B2、C2、D2,
∴四邊形A2B2C2D2的面積=S△A1A2D2+S△C1D1D2+S△C1B2C2+S△B1B2A2
= • A1D1• A1B1×4
= 矩形A1B1C1D1的面積,即四邊形A2B2C2D2的面積= 矩形A1B1C1D1的面積;
同理,得
四邊形A3B3C3D3= 四邊形A2B2C2D2的面積= 矩形A1B1C1D1的面積;
以此類(lèi)推,四邊形AnBnCnDn的面積= 矩形A1B1C1D1的面積= .
故答案是:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com