分析 (1)連結(jié)AD,如圖,根據(jù)圓周角定理得∠ADB=90°,則利用等腰三角形的性質(zhì)得BD=CD,∠B=∠C,再證明DF=DC,從而得到BC=2DF;
(2)在Rt△ABD中利用正弦定義求出AD,再利用勾股定理計(jì)算出BD,得到CD的長(zhǎng),接著在Rt△CDE中利用正弦求出DE,則利用勾股的定理計(jì)算出CE,然后根據(jù)等腰三角形的性質(zhì)得EF,然后計(jì)算AC-EF-CE即可.
解答 (1)證明:連結(jié)AD,如圖,
∵AB為直徑,
∴∠ADB=90°,
∵AB=AC,
∴BD=CD,∠B=∠C,
∵∠DFC=∠B,
∴∠DFC=∠C,
∴DF=DC,
∴BD=CD=CF,
∴BC=2DF;
(2)解:在Rt△ABD中,∵sinB=$\frac{AD}{AB}$=$\frac{12}{13}$,
而AB=13,
∴AD=12,
∴BD=$\sqrt{1{3}^{2}-1{2}^{2}}$=5,
∴CD=5,
在Rt△CDE中,∵sinC=$\frac{DE}{CD}$=sinB=$\frac{12}{13}$,
∴DE=$\frac{60}{13}$,
∴CE=$\sqrt{{5}^{2}-(\frac{60}{13})^{2}}$=$\frac{25}{13}$,
∵DF=DC,DE⊥CF,
∴EF=CE=$\frac{25}{13}$,
∴AF=AC-EF-CE=13-$\frac{25}{13}$×2=$\frac{119}{13}$.
點(diǎn)評(píng) 本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了等腰三角形的判定與性質(zhì)和解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{5π}{2}$ | C. | 3π | D. | $\frac{9π}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a•a4=a4 | B. | (a2)3=a5 | C. | ($\frac{a}{2}$)2=$\frac{{a}^{2}}{4}$ | D. | a6÷a3=a2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | -6 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com