【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點E,F,使得AE=CF,連接AF,BE相交于點P.(1)則∠APB=______度;(2)當點E從點A運動到點C時,則動點P經(jīng)過的路徑長為________cm.
【答案】120
【解析】
(1)證明△ABE≌△CAF,借用外角即可以得到答案;
(2)由∠APB=120°可知點P的運動路徑是一段弧,根據(jù)圓周角定理可得∠AOB=120°,過圓心O做OG⊥AB,由AB=可得OA=1,然后利用弧長公式計算即可.
解:(1)∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF,
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°,
∴∠APB=180°∠APE=120°;
(2)由∠APB=120°可知點P的運動路徑是一段弧,如圖,
∵∠APB=120°,
所以劣弧AB所對的圓周角為60°,
∴∠AOB=120°,
過圓心O做OG⊥AB,則∠AOG=30°,
又∵AB=,
∴AG=,
∴OA=,
∴動點P經(jīng)過的路徑長l=.
故答案為:(1)120;(2).
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(a+1)x+a2+3=0有兩個實數(shù)根x1,x2
(1)求實數(shù)a的取值范圍
(2)若等腰△ABC的三邊長分別為x1,x2,6,求△ABC的周長
(3)是否存在實數(shù)a,使x1,x2恰是一個邊長為的菱形的兩條對角線的長?若存在,求出這個菱形的面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD中,AB=10,BC=4,點P從點A出發(fā),以每秒1個單位長度沿AB方向向B運動,點Q從點C出發(fā),以每秒2個單位長度沿CD方向向D運動,如果P、Q兩點同時出發(fā),問幾秒后以△BPQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,且OA,OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A,B兩點,則sin∠OAB的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點M,過點B作BN∥MP交DC于點N.
(1)求證:AD2=DPPC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC分別交PM、PB于點E、F.若AD=3DP,探究EF與AE之間的的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點,且=,弦MN交AB于點C,BM平分∠ABD,MF⊥BD于點F.
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減小;⑥a+b+c>0正確的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形的邊長為,是邊上一點,,將,分別沿折痕,向內(nèi)折疊,點,在點處重合,過點作,交的延長線于.則下列結(jié)論正確的有( )
①;②為等腰直角三角形;③點是的中點;④.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B(4,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E現(xiàn)有下列結(jié)論:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正確結(jié)論個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com