如圖,△ABC是等腰直角三角形,∠A=90°,點(diǎn)P、Q分別是AB、AC上的一動點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn).
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形APDQ是正方形,并說明理由.

【答案】分析:(1)連接AD,根據(jù)直角三角形的性質(zhì)可得AD=BD=DC,從而證明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,則△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,從而證出△PDQ是等腰直角三角形;
(2)若四邊形APDQ是正方形,則DP⊥AP,得到P點(diǎn)是AB的中點(diǎn).
解答:(1)證明:連接AD
∵△ABC是等腰直角三角形,D是BC的中點(diǎn)
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
,
∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ為等腰直角三角形;

(2)解:當(dāng)P點(diǎn)運(yùn)動到AB的中點(diǎn)時,四邊形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D為BC中點(diǎn),
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
當(dāng)P為AB的中點(diǎn)時,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四邊形APDQ為矩形,
又∵DP=AP=AB,
∴矩形APDQ為正方形(鄰邊相等的矩形為正方形).
點(diǎn)評:本題考查正方形的判定:鄰邊相等的矩形為正方形.也考查了等腰直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,BC是斜邊,點(diǎn)P是△ABC內(nèi)一定點(diǎn),延長BP至P′,將△ABP繞點(diǎn)A旋轉(zhuǎn)后,與△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,△ABC是等腰三角形,AB=AC,D為直線BC上一點(diǎn),DE⊥AC,DF⊥AB,CH⊥AB,
(1)如圖(1)若D為BC的中點(diǎn),求證:DE+DF=CH.
(2)如圖(2)若D為BC延長線上一點(diǎn),其他條件不變,線段DE.DF.CH 之間有何數(shù)量關(guān)系,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)45°后得到△AB′C′,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•資陽)如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個圖(不添加輔助線)可以說明下列哪一個命題是假命題?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等腰直角三角形,D為斜邊AB上任意一點(diǎn)(不與A,B重合),連接CD,作EC⊥DC,且EC=DC,連接AE.
(1)求證:∠E+∠ADC=180°.
(2)猜想:當(dāng)點(diǎn)D在何位置時,四邊形AECD是正方形?說明理由.

查看答案和解析>>

同步練習(xí)冊答案