【題目】如圖,在平面直角坐標系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標為(3,0).點P是拋物線上一個動點,且在直線BC的上方.

(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標和四邊形面積的最大值。

【答案】
(1)解:將B、C兩點的坐標代入得 ,解得 ,

所以二次函數(shù)的表達式為y=﹣x2+2x+3


(2)解:如圖,

存在點P,使四邊形POP′C為菱形.

設(shè)P點坐標為(x,﹣x2+2x+3),PP′交CO于E,

若四邊形POPC是菱形,則有PC=PO,

連接PP則PE⊥CO于E,

∴OE=CE=

∴y= ,

∴-x2+2x+3=

解得x1= ,x2= (不合題意,舍去),

∴P點的坐標為( , );


(3)解:如圖1,

,

過點P作y軸的平行線與BC交于點Q,與OB交于點F,設(shè)P(x,﹣x2+2x+3)

易得,直線BC的解析式為y=﹣x+3.

則Q點的坐標為(x,﹣x+3).

PQ=﹣x2+3x.

S四邊形ABPC=S△ABC+S△BPQ+S△CPQ= ABOC+ QPBF+ QPOF= ×4×3+ (﹣x2+3x)×3=﹣ (x﹣ 2+ ,

當x= 時,四邊形ABPC的面積最大,

此時P點的坐標為( , ),四邊形ABPC面積的最大值為


【解析】(1)利用待定系數(shù)法將點C、點B的坐標代入函數(shù)解析式即可求出結(jié)果。
(2)要使四邊形POP′C為菱形,因此根據(jù)菱形的對角線互相平分,可得到P點的縱坐標,根據(jù)函數(shù)值與自變量的對應關(guān)系,建立方程可得答案。(3)過點P作y軸的平行線與BC交于點Q,與OB交于點F,先求出直線BC的函數(shù)解析式,根據(jù)兩函數(shù)解析式設(shè)點P的坐標,再表示出點Q的坐標,即可表示出PQ的長,再根據(jù)S四邊形ABPC=S△ABC+S△BPQ+S△CPQ,建立函數(shù)解析式,就可求出此時點P的坐標和四邊形面積的最大值。
【考點精析】利用確定一次函數(shù)的表達式和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠FAD60°

1)求∠ADE的度數(shù);

2)求證:EFBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山地自行車越來越受中學生的喜愛.一網(wǎng)店經(jīng)營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.

(1)求二月份每輛車售價是多少元?

(2)為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價現(xiàn)在的售價為每箱36元,每月可銷售60箱市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍;
(2)市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC頂點的坐標分別是A(﹣13)、B(﹣5,1)、C(﹣2,﹣2).

1)畫出ABC關(guān)于y軸對稱的ABC,并寫出ABC各頂點的坐標;

2)求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你補全證明過程:如圖,DGBC,ACBC,EFAB,∠1=2,求證:EFCD

證明:∵DGBCACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,表示一次函數(shù)y=ax+b與正比例函數(shù)y=abx(a,b是常數(shù),且ab≠0)的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農(nóng)村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:

1A型洗衣機和B型洗衣機的售價各是多少元?

2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.

(1)如圖①,當直線l與⊙O相切于點C時,求證:AC平分∠DAB;
(2)如圖②,當直線l與⊙O相交于點E,F(xiàn)時,求證:∠DAE=∠BAF.

查看答案和解析>>

同步練習冊答案