【題目】如圖,已知ABC中,B=90°,AB=8cm,BC=6cm。

(1)若P、Q是ABC邊上的兩個動點,其中點P從A沿AB方向運動,速度為每秒1cm,點Q從B沿BC方向運動,速度為每秒2cm,兩點同時出發(fā),設(shè)出發(fā)時間為t秒.當(dāng)t=1秒時,求PQ的長;從出發(fā)幾秒鐘后,PQB是等腰三角形?

(2)若M在ABC邊上沿BAC方向以每秒3cm的速度運動,則當(dāng)點M在邊CA上運動時,求BCM成為等腰三角形時M運動的時間.

【答案】(1)、PQ=;t=;(2)、t=2、t=、t=4

【解析】

試題分析:(1)、對于動點,首先將動點所產(chǎn)生的線段用含t的代數(shù)式來表示,然后根據(jù)勾股定理以及等腰三角形的性質(zhì)求出t的值;(2)、對于動點,首先將動點所產(chǎn)生的線段用含t的代數(shù)式來表示,然后根據(jù)勾股定理以及等腰三角形的性質(zhì)求出t的值.

試題解析:(1)、當(dāng)t=1時,AP=1,BP=7,BQ=2 PQ=

(2)、∵△PQB是等腰三角形,B=90° BP=BQ BP=8-t, BQ=2t

8-t=2t 解得t=

(3)、當(dāng)BC=BM時,t=2 當(dāng)MC=MB時,t= 當(dāng)CB=CM時,t=4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中有兩個不相等的實數(shù)根的方程是( )

A. (x-1)2=0 B. x2+2x-19=0

C. x2+4=0 D. x2+x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x+y|+|y3|=0,則 xy 的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P(x,y)的坐標(biāo)滿足|x|=5,y2=9,且xy>0,則點P的坐標(biāo)為( )

A. (5,3)或(-5,3) B. (5,3)或(-5,-3)

C. (-5,3)或(5,-3) D. (-5,3)或(-5,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=3x-1的圖像在y軸上的截距是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解九年級學(xué)生的投籃命中率,組織了九年級學(xué)生定點投籃,規(guī)定每人投籃3次.現(xiàn)對九年級(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計,繪制成如下的兩幅統(tǒng)計圖,根據(jù)圖中提供的信息,回答下列問題.

(1)九年級(1)班的學(xué)生人數(shù)m= 人,扇形統(tǒng)計圖中n= %;

(2)請補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中“3次”對應(yīng)的圓心角的度數(shù)為 °;

(4)若九年級有學(xué)生900人,估計投中次數(shù)在2次以上(包括2次)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標(biāo)為(2,0),BC=6,BCD=60°,點E是AB上一點,AE=3EB,P過D,O,C三點,拋物線y=ax2+bx+c過點D,B,C三點.

(1)請直接寫出點B、D的坐標(biāo):B( ),D( );

(2)求拋物線的解析式;

(3)求證:ED是P的切線;

(4)若點M為拋物線的頂點,請直接寫出平面上點N的坐標(biāo),使得以點B,D,M,N為頂點的四邊形為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.下列判斷: 當(dāng)x>2時,M=y2;當(dāng)x<0時,x值越大,M值越大;使得M大于4的x值不存在;M=2,則x= 1 .其中正確的有( )

A.1個 B.2個 C. 3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每個內(nèi)角都等于108°,則這個多邊形的邊數(shù)為( ).

A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案