【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。
(1)若P、Q是△ABC邊上的兩個動點,其中點P從A沿A→B方向運動,速度為每秒1cm,點Q從B沿B→C方向運動,速度為每秒2cm,兩點同時出發(fā),設(shè)出發(fā)時間為t秒.①當(dāng)t=1秒時,求PQ的長;②從出發(fā)幾秒鐘后,△PQB是等腰三角形?
(2)若M在△ABC邊上沿B→A→C方向以每秒3cm的速度運動,則當(dāng)點M在邊CA上運動時,求△BCM成為等腰三角形時M運動的時間.
【答案】(1)、PQ=;t=;(2)、t=2、t=、t=4
【解析】
試題分析:(1)、對于動點,首先將動點所產(chǎn)生的線段用含t的代數(shù)式來表示,然后根據(jù)勾股定理以及等腰三角形的性質(zhì)求出t的值;(2)、對于動點,首先將動點所產(chǎn)生的線段用含t的代數(shù)式來表示,然后根據(jù)勾股定理以及等腰三角形的性質(zhì)求出t的值.
試題解析:(1)、∵當(dāng)t=1時,AP=1,BP=7,BQ=2 ∴PQ=
(2)、∵△PQB是等腰三角形,∠B=90° ∴BP=BQ BP=8-t, BQ=2t
∴8-t=2t 解得t=
(3)、當(dāng)BC=BM時,t=2 當(dāng)MC=MB時,t= 當(dāng)CB=CM時,t=4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中有兩個不相等的實數(shù)根的方程是( )
A. (x-1)2=0 B. x2+2x-19=0
C. x2+4=0 D. x2+x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點P(x,y)的坐標(biāo)滿足|x|=5,y2=9,且xy>0,則點P的坐標(biāo)為( )
A. (5,3)或(-5,3) B. (5,3)或(-5,-3)
C. (-5,3)或(5,-3) D. (-5,3)或(-5,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解九年級學(xué)生的投籃命中率,組織了九年級學(xué)生定點投籃,規(guī)定每人投籃3次.現(xiàn)對九年級(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計,繪制成如下的兩幅統(tǒng)計圖,根據(jù)圖中提供的信息,回答下列問題.
(1)九年級(1)班的學(xué)生人數(shù)m= 人,扇形統(tǒng)計圖中n= %;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“3次”對應(yīng)的圓心角的度數(shù)為 °;
(4)若九年級有學(xué)生900人,估計投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標(biāo)為(2,0),BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線y=ax2+bx+c過點D,B,C三點.
(1)請直接寫出點B、D的坐標(biāo):B( ),D( );
(2)求拋物線的解析式;
(3)求證:ED是⊙P的切線;
(4)若點M為拋物線的頂點,請直接寫出平面上點N的坐標(biāo),使得以點B,D,M,N為頂點的四邊形為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.下列判斷: ①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x= 1 .其中正確的有( )
A.1個 B.2個 C. 3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com