【題目】如圖,△ABC是等腰直角三角形,延長BC至E使BE=BA,過點B作BD⊥AE于點D,BD與AC交于點F,連接EF.
(1)求證:BF=2AD;
(2)若CE=,求AC的長.
【答案】(1)見解析(2)2+
【解析】試題分析:(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根據(jù)垂直的定義得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,證得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到結(jié)論;
(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是結(jié)論即可.
(1)證明:∵△ABC是等腰直角三角形,
∴AC=BC,∴∠FCB=∠ECA=90°,
∵AC⊥BE,BD⊥AE,
∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,
∵∠CFB=∠AFD,
∴∠CBF=∠CAE,
在△BCF與△ACE中,,
∴△BCF≌△ACE,
∴AE=BF,
∵BE=BA,BD⊥AE,
∴AD=ED,即AE=2AD,
∴BF=2AD;
(2)由(1)知△BCF≌△ACE,
∴CF=CE=,
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
A.24° B.30° C.32° D.36°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點A(-3,0),B(1,0),C(0,-3).
(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設(shè)△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設(shè)拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知代數(shù)式6x-12與4+2x的值互為相反數(shù),那么x的值等于 ( )
A. -2 B. -1 C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:(1)相等的角是對頂角.(2) 同位角相等.(3)直角三角形的兩個銳角互余.(4)若兩條線段不相交,則兩條線段平行.其中正確的命題個數(shù)有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是( )
A.(﹣2,3) B.(2,﹣3)
C.(3,﹣2)或(﹣2,3) D.(﹣2,3)或(2,﹣3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com