【題目】已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點C順時針方向旋轉(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點E.
(1)如圖1,當∠CA′D=15°時,作∠A′EC的平分線EF交BC于點F.
①寫出旋轉(zhuǎn)角α的度數(shù);
②求證:EA′+EC=EF;
(2)如圖2,在(1)的條件下,設P是直線A′D上的一個動點,連接PA,PF,若AB=,求線段PA+PF的最小值.(結果保留根號)
【答案】(1)①105°,②見解析;(2)
【解析】
(1)①解直角三角形求出∠A′CD即可解決問題,
②連接A′F,設EF交CA′于點O,在EF時截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CE(SAS),即可解決問題.
(2)如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F關于A′E對稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問題.
①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α為105°.
②證明:連接A′F,設EF交CA′于點O.在EF時截取EM=EC,連接CM.
∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,
∴∠CEA′=120°,
∵FE平分∠CEA′,
∴∠CEF=∠FEA′=60°,
∵∠FCO=180°﹣45°﹣75°=60°,
∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,
∴△FOC∽△A′OE,
∴=,
∴=,
∵∠COE=∠FOA′,
∴△COE∽△FOA′,
∴∠FA′O=∠OEC=60°,
∴△A′CF是等邊三角形,
∴CF=CA′=A′F,
∵EM=EC,∠CEM=60°,
∴△CEM是等邊三角形,
∠ECM=60°,CM=CE,
∵∠FCA′=∠MCE=60°,
∴∠FCM=∠A′CE,
∴△FCM≌△A′CE(SAS),
∴FM=A′E,
∴CE+A′E=EM+FM=EF.
(2)解:如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.
由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,
∴△A′EF≌△A′EB′,
∴EF=EB′,
∴B′,F關于A′E對稱,
∴PF=PB′,
∴PA+PF=PA+PB′≥AB′,
在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,
∴B′M=CB′=1,CM=,
∴AB′===.
∴PA+PF的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.
(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.
(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小 明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:
實驗次數(shù) | 100 | 200 | 300 | 400 | 500 | 1000 |
摸出紅球 | 78 | 147 | 228 | 304 | 373 | 752 |
請你幫小明算出老師放入了多少個紅色小球.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了解九年級學生對“八禮四儀”的掌握情況,對該年級的500名同學進行問卷測試,并隨機抽取了10名同學的問卷,統(tǒng)計成績?nèi)缦拢?/span>
得分 | 10 | 9 | 8 | 7 | 6 |
人數(shù) | 3 | 3 | 2 | 1 | 1 |
(1)計算這10名同學這次測試的平均得分;
(2)如果得分不少于9分的定義為“優(yōu)秀”,估計這 500名學生對“八禮四儀”掌握情況優(yōu)秀的人數(shù);
(3)小明所在班級共有40人,他們?nèi)繀⒓恿诉@次測試,平均分為7.8分.小明的測試成績是8分,小明說,我的測試成績在班級中等偏上,你同意他的觀點嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個不透明的袋子,甲袋子里裝有標有兩個數(shù)字的張卡片,乙袋子里裝有標有三個數(shù)字的張卡片,兩個袋子里的卡片除標有的數(shù)字不同外,其大小質(zhì)地完全相同.
(1)從乙袋里任意抽出一張卡片,抽到標有數(shù)字的概率為 .
(2)求從甲、乙兩個袋子里各抽一張卡片,抽到標有兩個數(shù)字的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△ABC中∠A=60°,BM⊥AC于點M,CN⊥AC于點N,P為BC邊的中點,連接PM,PN,則下列結論:①PM=PN;②;③△PMN為等邊三角形;④當∠ABC=45°時,BN=BC,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函數(shù)y=(k<0)的圖象上,則( 。
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.
(1)求B、D兩點的坐標;
(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設F為y軸一動點,當線段PM長度最大時,求PH+HF+CF的最小值;
(3)在第(2)問中,當PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉(zhuǎn)60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開設了:籃球,:足球,:跳繩,:健美操四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學生,進行問卷調(diào)查(每個被調(diào)查的同學必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了 名學生;
(2)請補全兩幅統(tǒng)計圖;
(3)若有3名最喜歡足球運動的學生,1名最喜歡跳繩運動的學生組隊外出參加一次聯(lián)誼互動,欲從中選出2人擔任組長(不分正副),求兩人均是最喜歡足球運動的學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com