精英家教網 > 初中數學 > 題目詳情
在一個銳角∠AOB的內部作三條射線OC、OD、OE,則圖中共有角(。

A6   B10    C12    D20

 

答案:B
提示:

任意兩條射線構成了一個角。

 


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

“三等分角”是數學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數學家帕普斯借助函數給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=
1
x
的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數表達式(用含a,b的代數式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明精英家教網∠MOB=
1
3
∠AOB;
(3)應用上述方法得到的結論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)“三等分角”是數學史上一個著名問題,但數學家已經證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)
精英家教網
(2)數學家帕普斯借助函數給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數關系式(用含a、b的代數式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=
1
3
∠AOB.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•連云港)小明在一次數學興趣小組活動中,對一個數學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發(fā)現,△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數據:sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(
9
2
9
2
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在△ABC中,E、D分別為AB、AC上的點,且ED∥BC,O為DC中點,連結EO并延長交BC的延長線于點F,則有S四邊形EBCD=S△EBF
精英家教網
(1)如圖2,在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.將直線MN繞著點P旋轉的過程中發(fā)現,當直線MN滿足某個條件時,△MON的面積存在最小值.直接寫出這個條件:
 

(2)如圖3,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、(
9
2
,
9
2
)、(4、2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案