ABCD是邊長為1的正方形,△BPC是等邊三角形,則△BPD的面積為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:根據(jù)三角形面積計算公式,找到△BPD的面積等于△BCP和△CDP面積和減去△BCD的面積的等量關(guān)系,并進行求解.
解答:△BPD的面積等于△BCP和△CDP面積和減去△BCD的面積
因此本題求解△BCP、△CDP面積和△BCD的面積即可,
S△BCP==,
S△CDP==,
S△BCD=×1×1=,
∴S△BPD=+-=
故選B.
點評:本題考查了三角形面積的計算,考查了正方形對角線平分正方形為2個全等的等腰直角三角形.解決本題的關(guān)鍵是找到△BPD的面積等于△BCP和△CDP面積和減去△BCD的面積的等量關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)1.若方程x2-
k-1
x-1=0
有兩個不相等的實數(shù)根,則k的取值范圍
 

2.如圖,已知四邊形ABCD是邊長為2的正方形,以對角線BD為邊作正三角形BDE,過E作DA的延長線的垂線EF,垂足為F.
(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是邊長為4的正方形,動點P、Q同時從A點出發(fā),點P沿AB以每秒1個單位長度的速度向終點B運動.點Q沿折線ADC以每秒2個單位長度的速度向終點C運動,設(shè)運動時間為t秒.
(1)當t=2秒時,求證:PQ=CP;
(2)當2<t≤4時,等式“PQ=CP”仍成立嗎?試說明其理由;
(3)設(shè)△CPQ的面積為S,那么S與t之間的函數(shù)關(guān)系如何?并問S的值能否大于正方形ABCD面積的一半?為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經(jīng)過A,O,D三點,圖2和圖3是把一些這樣的小正方形精英家教網(wǎng)及其內(nèi)部的拋物線部分經(jīng)過平移和對稱變換得到的.
(1)求a的值;
(2)求圖2中矩形EFGH的面積;
(3)求圖3中正方形PQRS的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,ABCD是邊長為4cm的正方形,M是CD的中點,有一動點P從A點出發(fā),以1cm/s的速度沿A→B→精英家教網(wǎng)C→D→A方向運動,設(shè)P點運動的時間為t(s),△APM的面積為S(cm2).
(1)當t=3時,求S;
(2)當t=7時,求S;
(3)當4<t≤8時,試確定t與S的函數(shù)關(guān)系式;
(4)當8<t≤16且t≠10時,試確定t與S的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•貴陽模擬)如圖1,已知∠EOF,點B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點M,連接OM.
(1)當OM⊥AC時,求證:OA=OC.
(2)如圖2,當∠EOF=45°時,且四邊形ABCD是邊長為a的正方形時,求OM的長.(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案