【題目】小明在利用完全平方公式計算一個二項整式的平方時,不小心用墨水把中間一項的系數(shù)染黑了,得到正確的結(jié)果為4a2■ab+9b2 , 你認為這個二項整式應是( )
A.2a+3b
B.2a﹣3b
C.2a±3b
D.4a±9b
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( ).
A. “打開電視,正在播放《新聞聯(lián)播》”是必然事件
B. 一組數(shù)據(jù)的波動越大,方差越小
C. 數(shù)據(jù)1,1,2,2,3的眾數(shù)是3
D. 想了解某種飲料中含色素的情況,宜采用抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列的推理過程補充完整,并在括號里填上推理的依據(jù):
如圖,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分線.
試說明:DF∥AB
解:因為BE是∠ABC的角平分線
所以 (角平分線的定義)
又因為∠E=∠1(已知)
所以∠E=∠2( )
所以 ( )
所以∠A+∠ABC=180°( )
又因為∠3+∠ABC=180°(已知)
所以 ( )
所以DF∥AB( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF。
(1)求證:△EBF≌△DFC;
(2)求證:四邊形AEFD是平行四邊形;
(3)①△ABC滿足_____________________時,四邊形AEFD是菱形。(無需證明)
②△ABC滿足_______________________時,四邊形AEFD是矩形。(無需證明)
③△ABC滿足_______________________時,四邊形AEFD是正方形。(無需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N, 有下列四個結(jié)論:① DF=CF;② BF⊥EN;
③△BEN是等邊三角形;④ S△BEF=3S△DEF.其中,正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列數(shù)據(jù)不能用有序數(shù)對表示的是( )
A. 4樓,5樓 B. 6樓,8號 C. 3號路,25號 D. 東經(jīng)110°,北緯67°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個實數(shù)的算術平方根等于它的立方根,那么滿足條件的實數(shù)有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com