【題目】某社區(qū)組織了以奔向幸福,步如飛為主題的踢毽子比賽活動,初賽結束后有甲、乙兩個代表隊進入決賽,已知每隊有5名隊員,按團體總數(shù)排列名次,在規(guī)定時間內每人踢100個以上(100)為優(yōu)秀.下表是兩隊各隊員的比賽成績.

1

2

3

4

5

總數(shù)

甲隊

103

102

98

100

97

500

乙隊

97

99

100

96

108

500

經統(tǒng)計發(fā)現(xiàn)兩隊5名隊員踢毽子的總個數(shù)相等,按照比賽規(guī)則,兩隊獲得并列第一.學習統(tǒng)計知識后,我們可以通過考查數(shù)據中的其它信息作為參考,進行綜合評定:

1)甲、乙兩隊的優(yōu)秀率分別為    ;

2)甲隊比賽數(shù)據的中位數(shù)為    個;乙隊比賽數(shù)據的中位數(shù)為    個;

3)分別計算甲、乙兩隊比賽數(shù)據的方差;

4)根據以上信息,你認為綜合評定哪一個隊的成績好?簡述理由.

【答案】160%,40%;(2100,99;(3,;(4)綜合評定甲隊的成績好.理由見解析.

【解析】

1)分別讓甲乙兩隊的優(yōu)秀個數(shù)除以總數(shù)即可得得兩隊的優(yōu)秀率;

2)根據中位數(shù)的求法分別求得甲乙兩隊的中位數(shù)即可;

3)根據方差的求法分別求得甲乙兩隊的方差即可;

4)結合(1)、(2)、(3)的結論進行分析判斷即可.

解:(1)∵甲隊優(yōu)秀成績有三個,乙隊優(yōu)秀成績有二個

,

2)∵甲乙兩隊成績的數(shù)據分別由小到大排序為:、、、;、、

∴甲乙兩隊的中位數(shù)分別是、;

3)∵甲、乙兩隊比賽數(shù)據的平均數(shù)均為 ()

4)綜合評定甲隊的成績好.

理由如下:因為甲隊的優(yōu)秀率比乙隊高;甲隊的中位數(shù)比乙隊大;甲班的方差比乙班低,比較穩(wěn)定,綜合評定甲隊比較好.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據圖中信息回答下列問題:

(1)圖中a的值為   

(2)若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70≤x<80”所對應扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學生大約有   人:

(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結論正確的是   ;

對稱軸是:直線x1;頂點坐標(1,﹣a2);拋物線一定經過兩個定點.

2)當a0時,設△ABM的面積為S,求Sa的函數(shù)關系;

3)將二次函數(shù)yax22ax2的圖象C1繞點Pt,﹣2)旋轉180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N

當﹣2x1時,旋轉前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

a1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是某浴室花灑實景圖,圖2是該花灑的側面示意圖.已知活動調節(jié)點B可以上下調整高度,離地面CD的距離BC160cm.設花灑臂與墻面的夾角為α,可以扭動花灑臂調整角度,且花灑臂長AB30cm.假設水柱AE垂直AB直線噴射,小華在離墻面距離CD120cm處淋。

1)當α30°時,水柱正好落在小華的頭頂上,求小華的身高DE

2)如果小華要洗腳,需要調整水柱AE,使點E與點D重合,調整的方式有兩種:

其他條件不變,只要把活動調節(jié)點B向下移動即可,移動的距離BF與小華的身高DE有什么數(shù)量關系?直接寫出你的結論;

活動調節(jié)點B不動,只要調整α的大小,在圖3中,試求α的度數(shù).

(參考數(shù)據:1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC及其外接圓,∠C=90°,AC=10

(1)若該圓的半徑為5,求∠A的度數(shù);

(2)MAB邊上(AMBM),連接CM并延長交該圓于點D,連接DB,過點CCE垂直DB的延長線于E.若BE=3,CE=4,試判斷ABCD是否互相垂直,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將長為2、寬為aa大于1且小于2)的長方形紙片按如圖①所示的方式折疊并壓平,剪下一個邊長等于長方形寬的正方形,稱為第一次操作:再把剩下的長方形按如圖②所示的方式折疊并壓平,剪下個邊長等于此時長方形寬的正方形,稱為第二次操作:如此反復操作下去,若在第n次操作后,剩下的長方形恰為正方形,則操作終止當n=3時,a的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點A、B,把拋物線在x軸及其下方的部分記作C1,將C1向左平移得到C2C2x軸交于點B、D,若直線yx+mC1、C2共有3個不同的交點,則m的取值范圍是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄭州市精準扶貧工作已進入攻堅階段.貧困戶張伯伯在相關單位的幫扶下把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售在銷售的30天中,第一天賣出20千克為了擴大銷量采取了降價措施以后每天比前一天多賣出4千克第天的售價為/千克,關于的函數(shù)解析式為,且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成本是18/千克,每天的利潤是元(利潤=銷售收入成本).

1_____________,____________

2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小芳身高1.6米,此時太陽光線與地面的夾角為45°

1)若小芳正站在水平地面A處上時,那么她的影長為多少米?

2)若小芳來到一個坡度i=的坡面底端B處,當她在坡面上至少前進多少米時,小芳的影子恰好都落在坡面上?

查看答案和解析>>

同步練習冊答案