分析 已知CD∥EF,需證CE∥DF;連接AB;由圓內(nèi)接四邊形的性質(zhì)知:∠BAD=∠E,∠BAD+∠F=180°,可證得∠E+∠F=180°,即CE∥DF,由此得證.
解答 證明:連接AB,
∵ABEC是⊙O1的內(nèi)接四邊形,
∴∠BAD=∠E.
又∵ADFB是⊙O2的內(nèi)接四邊形,
∴∠BAD+∠F=180°.
∴∠E+∠F=180°.
∴CE∥DF.
∵CD∥EF,
∴四邊形CEFD是平行四邊形.
點(diǎn)評 此題考查了圓內(nèi)接四邊形的性質(zhì)、平行四邊形的判定以及等圓或同圓中等弦對等弧的應(yīng)用,解題的關(guān)鍵是添加輔助線,記住相交兩個(gè)圓公共弦是常用輔助線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{18}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{3}$m | B. | 6$\sqrt{5}$m | C. | 12$\sqrt{5}$m | D. | 24m |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com