如圖,四邊形ABCD是一個(gè)正方形.
(1)請你在平面內(nèi)找到一個(gè)點(diǎn)O,并連接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD是全等的等腰三角形.
(2)寫出你找到的等腰三角形的頂角的度數(shù).

【答案】分析:(1)連接AC,BD交于一點(diǎn),則根據(jù)正方形的對角線相等的性質(zhì),OA=OB=OC=OD且AC⊥BD,可以得△OAB≌△0BC≌△OCD≌△OAD;
(2)該等腰三角形的頂角為∠AOB=90°.
解答:解:(1)連接AC,BD,AC、BD交于O點(diǎn),
則OA=OB=OC=OD,
且∠AOB=∠BOC=∠COD=∠DOA,
∴△OAB≌△0BC≌△OCD≌△OAD,
故對角線交點(diǎn)O即為所求O點(diǎn);

(2)△OAB中,∠AOB=90°,OA=OB,
∴要求的等腰三角形頂角為90°.
點(diǎn)評:本題考查了正方形對角線相等、垂直且互相平分的性質(zhì),考查了等腰直角三角形頂角為90°的性質(zhì),本題中準(zhǔn)確的找出O點(diǎn)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案