【題目】如圖1是立方體和長方體模型,立方體棱長和長方體底面各邊長都為1,長方體側(cè)棱長為2,現(xiàn)用60張長為6寬為4的長方形卡紙,剪出這兩種模型的表面展開圖,有兩種方法:
方法一:如圖2,每張卡紙剪出3個立方體表面展開圖;
方法二:如圖3,每張卡紙剪出2個長方體表面展開圖(圖中只畫出1個).
設用x張卡紙做立方體,其余卡紙做長方體,共做兩種模型y個.
(1)在圖3中畫出第二個長方體表面展開圖,用陰影表示;
(2)寫出y關于x的函數(shù)解析式;
(3)設每只模型(包括立方體和長方體)平均獲利為w(元),w滿足函數(shù) ,若想將模型作為教具賣出,且制作的長方體的個數(shù)不超過立方體的個數(shù),則應該制作立方體和長方體各多少個,使獲得的利潤最大?最大利潤是多少?
【答案】
(1)解:展開圖如圖所示:
(2)解:y=3x+2(60-x)=x+120
(3)解:設總利潤為Q(元),
Q=(1.6- )(x+120)=-0.01x2+0.4x+192 =-0.01(x-20)2+196,∵制作的長方體的個數(shù)不超過立方體的個數(shù), ∴2(60-x)≤3x,x≥24, ∴24≤x≤60, ∴x=24時,Q最大=195.84(元),60-24=36(個)
答:制作立方體24個,長方體36個時,利潤最大為195.84元
【解析】(1)將圖3中的長方體展開圖旋轉(zhuǎn)180畫出圖形即可;
(2)利用用x張卡紙做立方體,其余卡紙做長方體,共做兩種模型y個,卡紙60張,每張長方形卡紙長為6,寬為4,由圖知,一張卡紙可以做3個立方體,一張卡紙只能做2個長方體,然后根據(jù)所做的立方體的個數(shù)加所做的長方體的個數(shù)=總個數(shù)得出y與x的函數(shù)關系式;
(3)設總利潤為Q(元),利用每只模型(包括立方體和長方體)平均獲利為w(元),w滿足函數(shù)w=1.6- , 進而利用數(shù)量乘以每個的利潤=總利潤得出Q與x的函數(shù)關系式,并化為頂點式,然后根據(jù)制作的長方體的個數(shù)不超過立方體的個數(shù),得出自變量x的取值范圍,進而得出答案.
【考點精析】根據(jù)題目的已知條件,利用幾何體的展開圖的相關知識可以得到問題的答案,需要掌握沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=k1x+6與x軸、y軸分別交于點A、B兩點,與正比例函數(shù)y=k2x交于點D(2,2)
(1)求一次函數(shù)和正比例函數(shù)的表達式;
(2)若點P(m,m)為直線y=k2x上的一個動點(點P不與點D重合),點Q在一次函數(shù)y=k1x+6的圖象上,PQ∥y軸,當PQ=OA時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進2海里到達B點,此時測得無名小島C在東北方向上.已知無名小島周圍2.5海里內(nèi)有暗礁,問漁船繼續(xù)追趕魚群有無觸礁危險?(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù) (m為常數(shù))的圖象與x軸交于點A(﹣3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A,C兩點,并與x軸的正半軸交于點B.
(1)求m的值及拋物線的函數(shù)表達式;
(2)設E是y軸右側(cè)拋物線上一點,過點E作直線AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,求出點E的坐標及相應的平行四邊形的面積;若不存在,請說明理由;
(3)若P是拋物線對稱軸上使△ACP的周長取得最小值的點,過點P任意作一條與y軸不平行的直線交拋物線于M1(x1 , y1),M2(x2 , y2)兩點,試探究 是否為定值,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個兩位正整數(shù)m的個位數(shù)為8,則稱m為“好數(shù)”.
(1)求證:對任意“好數(shù)”m,m2-64一定為20的倍數(shù);
(2)若m=p2-q2,且p,q為正整數(shù),則稱數(shù)對(p,q)為“友好數(shù)對”,規(guī)定: ,例如68=182-162,稱數(shù)對(18,16)為“友好數(shù)對”,則,求小于50的“好數(shù)”中,所有“友好數(shù)對”的H(m)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.
(1)甲、乙兩種款型的T恤衫各購進多少件?
(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.
(1)S△ABC=;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為底邊的等腰△ABP,使該三角形的面積等于△ABC的面積,并簡要說明點P的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BM是ABC內(nèi)部的一條射線,且,點A關于BM的對稱點為D,連接AD,BD,CD,其中AD、CD的延長線分別交射線BM于點E,P.
(1)依題意補全圖形;
(2)若ABM ,求BDC 的大。ㄓ煤的式子表示);
(3)用等式表示線段PB,PC與PE之間的數(shù)量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com