<span id="motxg"></span>
某學(xué)校體育器材室共有60個(gè)鉛球,一天課外活動(dòng),有三個(gè)班級(jí)分別計(jì)劃借鉛球總數(shù)的
1
2
,
1
3
1
5
.請(qǐng)你算一算,這60個(gè)鉛球夠借嗎?如果夠了,還多幾個(gè)鉛球?如果不夠,還缺幾個(gè)?
考點(diǎn):有理數(shù)的混合運(yùn)算
專題:
分析:用整體1減去各班借出的鉛球的份數(shù),然后乘以60,再利用乘法分配律進(jìn)行計(jì)算即可得解.
解答:解:60×(1-
1
2
-
1
3
-
1
5

=60-
1
2
×60-
1
3
×60-
1
5
×60
=60-30-20-12
=60-62
=-2.
答:不夠借,還缺2個(gè)鉛球.
點(diǎn)評(píng):本題考查了有理數(shù)的混合運(yùn)算,利用運(yùn)算定律可以使計(jì)算更加簡(jiǎn)便.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列計(jì)算錯(cuò)誤的是( 。
A、(x+1)(x2-x+1)=x3+1
B、(x+2)2=x2+4x+4
C、(x-1)(x+1)=x2+1
D、(x-1)2=x2-2x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,錯(cuò)誤的有( 。
①-2
4
7
是負(fù)分?jǐn)?shù);
②1.5不是整數(shù);
③非負(fù)有理數(shù)不包括0;
④正整數(shù)、負(fù)整數(shù)統(tǒng)稱為有理數(shù);
⑤0是最小的有理數(shù);
⑥3.14不是有理數(shù).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【探究發(fā)現(xiàn)】
按圖中方式將大小不同的兩個(gè)正方形放在一起,分別求出陰影部分(△ACF)的面積.
(單位:厘米,陰影部分的面積依次用S1、S2、S3表示) 
(1)S1=
 
cm2;     S2=
 
cm2;          S3=
 
cm2
(2)上題中,重新設(shè)定正方形ABCD的邊長(zhǎng),AB=
 
cm,并再次分別求出陰影部分(△ACF)的面積:
     S1=
 
cm2;  S2=
 
cm2;  S3=
 
cm2
(3)歸納總結(jié)你的發(fā)現(xiàn):
 

【推理反思】
按(圖甲)中方式將大小不同的兩個(gè)正方形放在一起,設(shè)小正方形的邊長(zhǎng)是bcm,大正方形的邊長(zhǎng)是a cm,求:陰影部分(△ACF)的面積.

【應(yīng)用拓展】
(1)按(圖甲)方式將大小不同的兩個(gè)正方形放在一起,若大正方形的面積是80cm2,則圖甲中陰影三角形的面積是
 
cm2
(2)如圖乙,C是線段AB上任意一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)構(gòu)造等邊三角形△ACD和等邊三角形△CBE,若△CBE的面積是1cm2,則圖乙中陰影三角形的面積是
 
 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值.
①(2x+3)-(3x+5),其中x=2.
②a+2(b-a)-3(a-b),其中a=2,b=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A在∠O的一邊OA上.按要求畫(huà)圖并填空:
(1)過(guò)點(diǎn)A畫(huà)直線AB⊥OA,與∠O的另一邊相交于點(diǎn)B;
(2)過(guò)點(diǎn)A畫(huà)OB的垂線段AC,垂足為點(diǎn)C;
(3)過(guò)點(diǎn)C畫(huà)直線CD∥OA,交直線AB于點(diǎn)D;
(4)∠CDB=
 
°;
(5)如果OA=8,AB=6,OB=10,則點(diǎn)A到直線OB的距離為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P為正方形ABCD的邊AD上的一個(gè)動(dòng)點(diǎn),AE⊥BP,CF⊥BP,垂足分別為點(diǎn)E、F,已知AD=5.
(1)試說(shuō)明AE2+CF2的值是一個(gè)常數(shù);
(2)過(guò)點(diǎn)P作PM∥FC交CD于點(diǎn)M,點(diǎn)P在何位置時(shí),線段DM最長(zhǎng)?并求出此時(shí)DM的值.
(3)在(2)的情況下,BC邊上是否存在一點(diǎn)N,使△PMN的周長(zhǎng)最短?若不存在說(shuō)明理由;若存在,請(qǐng)確定點(diǎn)N距點(diǎn)B的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)(1-
2
0+
8
-2sin45°-(
2
3
-1
(2)先化簡(jiǎn)(
3
a+1
-a+1)÷
a2-4a+4
a+1
,并從0,-1,2中選一個(gè)合適的數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)P1(x1,y1)與P2(x2,y2)的“識(shí)別距離”,給出如下定義:
若|x1-x2|≥|y1-y2|,則點(diǎn)P1(x1,y1)與點(diǎn)P2(x2,y2)的“識(shí)別距離”為|x1-x2|;
若|x1-x2|<|y1-y2|,則P1(x1,y1)與點(diǎn)P2(x2,y2)的“識(shí)別距離”為|y1-y2|;
(1)已知點(diǎn)A(-1,0),B為y軸上的動(dòng)點(diǎn),
①若點(diǎn)A與B的“識(shí)別距離為”2,寫(xiě)出滿足條件的B點(diǎn)的坐標(biāo)
 

②直接寫(xiě)出點(diǎn)A與點(diǎn)B的“識(shí)別距離”的最小值
 

(2)已知C點(diǎn)坐標(biāo)為C(m,
3
4
m+3),D(0,1),求點(diǎn)C與D的“識(shí)別距離”的最小值及相應(yīng)的C點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案