如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE、AC和BE相交于點(diǎn)O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長(zhǎng)交線段AE于點(diǎn)Q,QR⊥BD,垂足為點(diǎn)R.四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?若變化,請(qǐng)說明理由;若不變,求出四邊形PQED的面積.

解:(1)四邊形ABCE是菱形,證明如下:
∵△ECD是由△ABC沿BC平移得到的,
∴EC∥AB,且EC=AB,
∴四邊形ABCE是平行四邊形,
又∵AB=BC,
∴四邊形ABCE是菱形.

(2)由菱形的對(duì)稱性知,△PBO≌△QEO,
∴S△PBO=S△QEO
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6,
又∵BE⊥AC,∴BE⊥ED,
∴S四邊形PQED=S△QEO+S四邊形POED=S△PBO+S四邊形POED=S△BED
=×BE×ED=×8×6=24.
分析:(1)利用平移的知識(shí)可得四邊形ABCE是平行四邊形,進(jìn)而根據(jù)AB=BC可得該四邊形為菱形;
(2)利用證明三角形全等可得四邊形PQED的面積為三角形BED的面積,所以不會(huì)改變;進(jìn)而利用三角形的面積公式求解即可.
點(diǎn)評(píng):考查菱形的判定及相關(guān)性質(zhì);把不規(guī)則圖形的面積轉(zhuǎn)化為較簡(jiǎn)單的規(guī)則圖形的面積是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案