AB是⊙O的直徑,點E是半圓上一動點(點E與點A、B都不重合),點C是BE延長線上的一點,且CD⊥AB,垂足為D,CD與AE交于點H,點H與點A不重合。

   (1)(5分)求證:△AHD∽△CBD

   (2)(4分)連HB,若CD=AB=2,求HD+HO的值

 

【答案】

 

(1)證明略

(2)1

【解析】(1)證明:略

(2)設OD=x,則BD=1-x,AD=1+x

證Rt△AHD∽Rt△CBD

   則HD : BD=AD : CD

   即HD : (1-x)=(1+x) : 2

     即HD=

    在Rt△HOD中,由勾股定理得:

    OH==

    所以HD+HO=+=1

注意:當點E移動到使D與O重合的位置時,這時HD與HO重合,

由Rt△AHO∽Rt△CBO,利用對應邊的比例式為方程,可以算出HD=HO=,即HD+HO=1

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,點D是
AC
的中點,過D點作DE⊥BC交BC于E,交BA于M;
(1)求證:ED是⊙O的切線;
(2)連接AC交BD于F,若AF=5,CF=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,點C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE與⊙O相切,交CB的延長線于E.
(1)判斷直線AC和DE是否平行,并說明理由;
(2)若∠A=30°,BE=1cm,分別求線段DE和
BD
的長(直接寫出最后結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淮北模擬)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,且AB=10,AC=8.
(1)如果OE⊥AC,垂足為E,求OE的長;
(2)求tan∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,點C在⊙O的切線BF上,過C作直線CE⊥BF,交⊙O于點D、點E,連接AE、
AD和BD.
(1)請找出一對相似三角形,并證明你的結論;
(2)若CD=1,AB=5,求tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB是⊙O的直徑,點C在上半圓上,點M是弧AC的中點.弦AC、BM相交于P,則圖中與∠BPC相等的角有
2
2
個(不包括∠BPC)

查看答案和解析>>

同步練習冊答案